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Abstract—In this study we investigate the effectiveness of a
meta-computing method on the modeling and the implementation
of a truly multi-domain, multi-physics numerical scheme for an
important practical problem in the area of environmental engineering.
A case study of the steady state of saltwater intrusion in costal
aquifers is considered and a meta-computing scheme is developed
and implemented on the basis of modern highly efficient software
tools and practices. Numerical experiments exhibit the several de-
sired characteristics of the proposed methodology and the associated
implementation. They also justify the necessity for further research
and development for an emerging new numerical computing paradigm
that although known has not yet prove its practical value in particular
for realistic engineering problems.

Keywords—Multi-Physics - Multi-Domain problems, FEniCS soft-
ware, Schwarz method.

I. INTRODUCTION

OOVERLAPPING domain decomposition methods [1] are
efficient and flexible. They are also inherently suitable

for high level parallel computing the numerical solution of
partial differential equations (PDEs), where the methods of
concern are based on a physical decomposition of a global
solution domain. The global solution of the PDE problem
is then sought by solving the smaller subdomain problems
collaboratively and then combining their individual solutions.
Their collaboration is realized through an iteration scheme
that allows information flowing among the subproblems. These
numerical methods are therefore termed as domain decompo-
sition (DD) methods.

It is important to point out that our methodology is solely
at continuous level. Linear algebra based DD methods are of
obvious importance but unable to serve the high level meta-
computing paradigm which we believe has great potential
for multi-domain multi-physics (MDMP) problems. In this
paradigm the basic components are PDE problems and numer-
ical discretization and linear algebra computations take place
only within each subdomain and not globally.

The rest of this paper is organized as follows. In the
next session we briefly present our efforts to develop a
framework for the numerical solution of MDMP problems.
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The mathematical description of the well known Schwarz
method that consists one of the basis of our framework is
given in Section III. Section V includes material related to
our implementation. Selective numerical results are presented
in section VII. Our conclusions are given in section VIII.

II. A PLATFORM FOR MULTI-DOMAIN, MULTI-PHYSICS
PDE PROBLEMS.

There exist a plethora of software platforms for solving
composite PDE problems in various way and utilizing various
programming languages and techniques. Our platform utilizes
and extends the Python user interface of the FEniCS Dolfin
library. The reason behind our preference in Python is clearly
practical. Its syntax is closer to UFL syntax and is less time
consuming to experiment with due to its scripting nature. our
platform is based on FEniCS 1.3 and is briefly described
below. More information about our efforts to design and
implement this platform can be found in [2].

As mentioned we focus on multi-domain multi-physics
(MDMP) problems modeled with PDEs. As such we propose
that every new solving module should be implemented on top
of the existing ones, either as a new Python module using
the available data structures and classes, or as an external
dynamically shared C++ library, wrapped as a Python module
using SWIG [3].

Our goal is to design and offer an enhanced meta-computing
environment based on simple scripting languages and their
practices that facilitate the numerical solution of PDEs asso-
ciated with existing MDMP mathematical models. To accom-
plish that we utilize state of the art numerical solvers as offered
by the supported FEniCS numerical discretization schemes and
the state of the art linear algebra backends.

The platform aims to cover a wide range of problems,
following a generic design that can support arbitrary shapes
(rectangular or curvilinear) for domains and interfaces, for
both 2D and 3D geometries.

One of our critical development decisions during our de-
velopment phase was to keep compatibility with existing user
codebases. Therefore to eliminate the possibility of breaking
any existing functionality we kept the official release of FE-
niCS unmodified, putting all the new functionality on external
Python modules.

Problems with great interest are problems with different
elliptic differential operators on different subdomains as well
as problems with different PDE discretization and solving



modules on different subdomains. FEniCS already supports
independent subdomain definitions; the platforms honors the
existing infrastructure and builds upon it.

There are two emerging methodologies integrated to our
platform, that can be used directly with any existing type of
MDMP problem, as far as it conforms with the mathematical
model behind them. One is a hybrid stochastic/deterministic
Monte Carlo-based approach [4] and the other is an overlap-
ping domain decomposition method known as the classical
alternating Schwarz method [1, chapter 2.1] considered below.

III. SCHWARZ SPLITTING METHODOLOGY

THE classical alternating Schwarz method demonstrates
the basic mathematical idea of overlapping domain de-

composition methods.
For presentation reasons, and without loss of generality, we

consider the following very simple boundary-value problem
where the domain Ω is defined as the union of a circle Ω1

and a rectangle Ω2, as it is depicted in Fig. 1.

−∇2u = f in Ω = Ω1 ∩Ω2,
u = g on ϑΩ.

The part of the subdomain boundary ϑΩi\ϑΩ is referred
to as the artificial internal boundary of the subdomain Ωi for
i = 1, 2.

Fig. 1: A composite PDE model problem

In order to utilize analytical solution methods for solving
the Poisson equation on a circle and a rectangle separately,
Schwarz proposed the following iterative procedure for the
solution in the entire composite domain Ω. Let uni denote an
approximate solution in subdomain Ωi, and fi the restriction
of f to Ωi. Starting with an initial guess u0, we iterate by
computing successive approximate local solutions ui, i =
1, 2, . . ., until they converge to the overall solution. During
each iteration, we first solve the Poisson equation restricted to
the circle Ω1, using the previous iterations solution from Ω2

on the artificial internal boundary Γ1 :

−∇2ui1 = f1 in Ω1,
ui1 = g on ϑΩ1\Γ1,
ui1 = un−1

2 | Γ1 on Γ1.

Then, we solve the Poisson equation on the rectangle Ω2,
using the latest solution ui1 on the artificial internal boundary
Γ2:

−∇2ui2 = f2 in Ω2,
ui2 = g on ϑΩ2\Γ2,

ui2 = ui1|Γ2 on Γ2.

Note that the classical alternating Schwarz method is se-
quential by nature, meaning that the two Poisson solves within
each iteration must be carried out in a predetermined sequence,
first in Ω1 then in Ω2. For more than two subdomains though,
it exhibits pipeline type of parallelism in a Gauss-Seidel
manner.

A variant of the above method, which inherently promotes
parallel computing, is called additive Schwarz method and is
a Jacobi type variation of the above described scheme. This
variant converges slower for almost all problems.

IV. AN ENVIRONMENTAL ENGINEERING APPLICATION

Fig. 2: Kalimnos aquifer.

To demonstrate the potential of the PDE solving procedure
mentioned above and of the associated implementation frame-
work to deal with large application problems, we consider
solving a PDE that describes the steady state problem of
saltwater intrusion in coastal aquifers. The PDE needs to be
solved in every iteration step of a stochastic optimization
algorithm (cf. [5]–[7]), used to optimally control pumping
from all active pumping sources (wells) of a coastal aquifer
and protect them from salinization. Its solution (flow potential)
is being used to locate/determine the interface between salt
and fresh water. The aquifer considered here and depicted
in Fig. 2 simulates of a real coastal aquifer located at Bathi
area in the Greek island of Kalymnos (cf. [8]). The computer
realization of the problem is achieved by using FEniCS [9],
[10] computing platform, while the whole implementation has
been developed in Python.

Specificaly, let us consider the elliptic PDE
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where φ (m2) denotes the Struck’s flow potential, N (m/day)
denotes the total aquifer recharge uniformly distributed over
the surface of the aquifer, K (m/day) denotes the hydraulic
conductivity and Q (m/day) denotes the total aquifer dis-
charge. Furthermore, let us assume that the rectangular-shaped
aquifer R extends over an area of 7×3 Km, is heterogeneous
with respect to the hydraulic conductivity, and contains M
wells wi (i = 1, . . . ,M) pumping at Qi (m3/day) rates.
In our test problem the above physical parameters are as-
sumed the values of N = 0.03 m/year, M = 5 and
Q1 = 252 m3/day, Q2 = 450 m3/day, Q3 = 749 m3/day,



Q4 = 1045 m3/day and Q5 = 1270 m3/day, while the
hydraulic conductivity K assumes the values K1 = 25m/day,
K2 = 35 m/day, K3 = 50 m/day and K4 = 75 m/day as-
sociated with the four sub-regions ofR (see Fig. 2). Moreover,
the total discharge rate Q assumes the value

Q =

5∑
i=1

Q̃iδ(x− xi, y − yi)

where Q̃i denotes the pumping rate Qi normalized over some
elemental area and δ(x−xi, y−yi) denotes the Delta function.
Finally, Dirichlet boundary condition (φ(0, y) = 0) is assumed
on the left (coastline) edge, while, on all other edges, Neumann
boundary conditions are imposed, as shown in Fig. 2.

The above problem has been solved using the FEniCS FE
solver and the computed flow potential is depicted in Fig. 3.

Fig. 3: Kalimnos aquifer flow potential

Fig. 4: Interface location between salt and fresh water.

The interface between salt and fresh water is being algorith-
mically determined in the sequel, and shown graphically in
Fig. 4.

V. IMPLEMENTATION

We implement the additive Schwarz method and use it
as a high level solver to our MPDMP problems. The full
description of our implementation is beyond the scope of
this paper. Below we discuss few implementation issues that
characterize our implementation.

A. Split problem into files
For the best utilization of our platform, we propose and

encourage the use of an organization scheme based on defining
each subdomain into a separate file.

This organization scheme highlights the dependence be-
tween domains as distinct programming units. It also allows
easy collaboration and sharing between different researchers
or research groups and hides problem definition details from
the not interested parties. Another more technical reason is
that this subdomain separation to files, greatly simplifies the
implementation for supporting remote solvers and methods as
web services, a direction we follow which is quite attractive
due to its performance benefits.

B. Python module
All underlying datatypes of the base classes are either pure

Python or FEniCS objects. There is no dependence from
third party software libraries at this level. The Python module
consists of two files:
solverconfig.py provides the base classes with sanity checks

and the API for the solver to function properly.
solver.py implements the solving routine among a handful

of helper functions that simplify the whole process and
further sanity checks to ensure the proper setup of the
user’s problem.

Inside solverconfig.py the module defines the following base
classes:
class LogInfo Its purpose is to keep track of the progress in a

particular subdomain. The available information may be
written to a user defined logfile.

class ConfigCommon Holds separately the configuration of
the whole solver. Some of the attributes which the user
may set are the number of dimensions of the problem, the
maximum number of iterations for the solver, a tolerance
value that is used to check for convergence, the filenames
of the subdomains which will take part in the solving
process, whether the user wants the creation of logfiles
and whether they want visual plots of the solutions in
each iteration. The class provides some predefined default
values for all attributes.

class Config2D (as well as class Config3D) Derives from
ConfigCommon, with predefined number of dimensions
set to 2 (or 3 respectively). Everything else is the same
as the parent class.

class ConfigCommonProblem This is the base class the
user extends to define each subdomain. There are three
methods that need to be overridden. We discuss them
analytically below.

1) Domain API: Each subdomain object that inherits from
the ConfigCommonProblem base class must override the
following methods. The solver object calls these methods,
before the actual solving phase begins, in order to gather the
appropriate useful information and setup the appropriate data
structures for each subdomain.
init() This method holds the UFL [11] definition of the

subdomain and sets as class attributes the subdomain’s
function space, linear and bilinear form of the PDE.



neighbors() It provides information to the solver about the
other subdomains this subdomain overlaps with, in order
for the solver to automatically update the boundary values
after each iteration. It returns a Python dictionary with
keys the filename of the neighbor subdomain and as value
a method that returns the Boolean value True only for the
nodes on the common boundary of this subdomain and
the neighbor subdomain.

boundaries() It informs the solver about the fixed external
boundaries of the subdomain. It returns a Python list of all
the subdomain’s external boundaries, each element being
a DirichletBC object.

2) Iterative solver: The entry point of the iterative solver
is the solve() method as defined inside solver.py. It takes as
arguments a ConfigCommon object with the configuration of
the solving environment (max iterations, tolerance, etc) and
a Python list of user defined problem objects, all derived
from ConfigCommonProblem base class. After certain initial
steps (create logfiles, initialize solution vectors, etc), the main
solving routine, named solve(subdomains, config), is called.

The main points of interest of the iteration algorithm and
two of the helper methods are shown in the associated listing
in the Appendix:

After each iteration, for each subdomain solution, the algo-
rithm checks a set of halting criteria in the following order
that may terminate the solving process:

1) If the exact solution is known, check for convergence
w.r.t. the user defined tolerance value.

2) If the errornorm of the current and previous approxima-
tions (thereafter called iterants) is below a user defined
tolerance value.

3) If the max iterations limit as defined by the user is
reached.

Note that in order for the stop criterion() method to termi-
nate the algorithm, all subdomains must converge for either
of the two first criteria. The third criterion is common for all
subdomains.

The solver keeps logfiles for each boundary interface be-
tween all overlapping subdomains. They keep track of the
progress per iteration in a column based format which is
suitable to use as input to graphics modules for example
https://plot.ly and Gnuplot.

VI. EXAMPLE

For example a skeleton file (circle2D 1.py) with the defini-
tion (in Python) for the circle subdomain in Fig. 1 can be the
following as shown in the associated listing in the Appendix.

The skeleton definition is abstract to the geometry and
number of dimensions of the subdomain. That means that the
same skeleton code from the listing can be used to define the
rectangle subdomain as well.

Given two defined subdomains in files circle2D 1.py and
rectangle2D 1.py, the driver code that solves them is depicted
in the listing 1 below.

Listing 1: Code for solving two overlapping subdomains
from d o l f i n i m p o r t ∗

i m p o r t s o l v e r c o n f i g
i m p o r t s o l v e r

i m p o r t c i r c l e 2 D 1 as c i r c l e
i m p o r t r e c t a n g l e 2 D 1 as r e c t a n g l e

cp = c i r c l e . Problem ( )
rp = r e c t a n g l e . Problem ( )
subdomains =[ cp , rp ]

c o n f i g = s o l v e r c o n f i g . Config2D ( )
s o l v e r . s o l v e ( subdomains =subdomains , c o n f i g = c o n f i g )

# keep p l o t s on s c r e e n
i n t e r a c t i v e ( )

VII. NUMERICAL EXPERIMENTS

The above descripted implementation allow us to perform
a set of experiments that validate primarily the convergence
and secondly our assumptions concerning the desired charac-
teristics of the method.

We therefore consider the problem described in section IV
above.

This problem is naturally split into the four problems that
are defined due to the different PDE operator (different Qs
and Ks in PDE equation 1) and clearly depicted in Fig. 2.
We further split the right bottom domain into two subdomains
for the simple domain geometry reason so we only consider
rectangular subdomains. This results into a total of five sub-
problems.

In multidomain implementation for Schwarz method an
overlapping area for the second subdomain with hydraulic
conductivity K2 is considered. This area extends horizontally
for 400 m inside the other subdomains. Also an overlapping
region for the fourth subdomain in the third subdomain for 400
m is assumed. The region for 1400 m including well3 inside
the second subdomain is chosen for the overlapping region
for the third subdomain. The above overlapping configuration
results into a total of 14 interfaces among the five subdomains.
Unfortunately it is difficult to visualize them easily.

Due to space limitations
• No details on the FE modules utilized withing each

subproblem are given (they could be any state-of-the-art
FE module available within FEniCS and beyond).

• We present below a only a series of figures that reveal the
convergence characteristics of the method. A complete
experimental study of the proposed method is beyond the
scope of this paper and will be presented elsewhere.

As clearly seen from Fig. 6 and 5 the method regardless
the involvement of five subproblems with a total of fourteen
interfaces converges rather rapidly.

The nature of the convergence is depicted also in Fig. 7
where it is seen that high frequency error terms are first
eliminated (during the first few iterations) and the solution
is further being smooth in subsequent iterations.

Finaly, comparing Fig. 7 and 3 observe that our DD iteration
scheme converges to the solution computed by means of the
conventional FE method on the whole domain.



Fig. 5: The history of convergence with repect to the norm
of the relative differences in the successive iterants on each
subproblem.

Fig. 6: The history of convergence with respect to the norm
of the relative differences in the successive iterants on each of
the 14 interfaces associated with the subproblems in Fig. 5.

VIII. CONCLUSION

We have developed a software platform with convenient
Application Programming Interfaces and utilize it for the
effective numerical solution of a practical problem in en-
vironmental engineering. Our scheme shows that the meta-
computing paradigm for solving composite MDMP problems
on state-of-the-art platforms consists a very promising ap-
proach. It allows us to relate the multi- nature of the problem
to associated programming components and solving modules.
Surely, more research and development is needed on both
theoretical, algorithmic and programming matters, and we plan
to work in this direction.
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APPENDIX

Listing 2: Common skeleton code example for subdomain definitions
1 # u s e r d e f i n e d methods
2 d e f O v e r a l a p p i n g W i t h O t h e r ( ) : p a s s
3 d e f ge tOrCrea teMesh ( ) : p a s s
4 d e f userDef inedUFL ( ) : p a s s
5 d e f u s e r D e f i n e d B o u n d a r y C o n d i t i o n ( ) : p a s s
6
7 # s k e l e t o n example
8 d e f ExtBC ( x , on boundary ) :
9 r e t u r n on boundary and n o t O v e r a l a p p i n g W i t h O t h e r ( )

10
11 d e f E x t I f a c e ( x , on boundary ) :
12 r e t u r n on boundary and O v e r a l a p p i n g W i t h O t h e r ( )
13
14 c l a s s Problem ( ConfigCommonProblem ) :
15 d e f i n i t ( s e l f , ∗ a rgs ,∗∗ kwargs ) :
16 mesh = ge tOrCrea teMesh (∗ a rgs ,∗∗ kwargs )
17 s e l f .V = F u n c t i o n S p a c e ( mesh , ’ Lagrange ’ , 1 )
18 s e l f . a , s e l f . L = userDef inedUFL (V)
19
20 d e f n e i g h b o r s ( s e l f ) :
21 i n t e r f a c e = {}
22 i n t e r f a c e [ ’ r e c t a n g l e ’ ] = E x t I f a c e
23 r e t u r n i n t e r f a c e
24
25 d e f b o u n d a r i e s ( s e l f ) :
26 bc = D i r i c h l e t B C ( s e l f . V, u s e r D e f i n e d B o u n d a r y C o n d i t i o n ( ) , ExtBC )
27 r e t u r n [ bc ]

Listing 3: Core code of the iterative algorithm routine
1 d e f i n t e r p o l a t e i n t e r f a c e s ( subdomains ) :
2 f o r subdomain i n subdomains :
3 f o r i f a c e i n subdomain . i n t e r f a c e s . i t e r v a l u e s ( ) :
4 i n t e r p o l a n t = i n t e r p o l a t e ( i f a c e [ ’ s o l u t i o n ’ ] , subdomain . t r i a l s p a c e ( ) )
5 i f a c e [ ’ i n t e r p o l a n t ’ ] . v e c t o r ( ) [ : ] = i n t e r p o l a n t . v e c t o r ( )
6
7 d e f s o l v e i t e r a t i o n ( subdomains ) :
8 f o r subdomain i n subdomains :
9 subdomain . s o l v e ( )

10
11 d e f u p d a t e i n t e r f a c e s ( subdomains ) :
12 f o r subdomain i n subdomains :
13 f o r i f a c e i n subdomain . i n t e r f a c e s . i t e r v a l u e s ( ) :
14 i f a c e [ ’ p r e v i o u s ’ ] . v e c t o r ( ) [ : ] = i f a c e [ ’ c u r r e n t ’ ] . v e c t o r ( )
15 i f a c e [ ’ bc ’ ] . a p p l y ( i f a c e [ ’ c u r r e n t ’ ] . v e c t o r ( ) )
16
17 d e f s o l v e ( subdomains , c o n f i g ) :
18 i t e r a t i o n = 0
19 i t e r a t e = True
20 w h i l e i t e r a t e :
21 i t e r a t i o n += 1
22
23 i n t e r p o l a t e i n t e r f a c e s ( subdomains )
24 s o l v e i t e r a t i o n ( subdomains )
25 u p d a t e i n t e r f a c e s ( subdomains )



26
27 i f c o n f i g . s h o w s o l u t i o n p l o t s :
28 f o r subdomain i n subdomains :
29 p l o t ( subdomain . s o l u t i o n ( ) , t i t l e =subdomain . name )
30 f o r subdomain i n subdomains :
31 i f s t o p c r i t e r i o n ( c o n f i g , subdomain , i t e r a t i o n ) :
32 i t e r a t e = F a l s e
33
34 r e t u r n [ subdomain . s o l u t i o n ( ) f o r subdomain i n subdomains ]


