
Automating data management in heterogeneous systems
using polyhedral analysis

Vassilis Vassiliadis
University of Thessaly, Greece

vasiliad@inf.uth.gr

Christos D. Antonopoulos
University of Thessaly, Greece

cda@inf.uth.gr

George Zindros
University of Thessaly, Greece

zindros@inf.uth.gr

ABSTRACT
In this paper we introduce a framework which automates
the task of data management for OpenCL programs across
multiple devices of a heterogeneous system. Our approach
uses compile-time analysis, based on the polyhedral model,
to associate computations with the data they consume /
produce. The results of the analysis are then used by a run-
time system which automates the task of data management.
Beyond alleviating the programmer from the burden of data
management, our framework enables partitioning computa-
tions to all computational devices of heterogeneous systems
according to the computational power and memory capac-
ity of each device, thus facilitating the exploitation of all
computational and memory resources of the system.

We evaluate our approach on a system containing a multi-
core CPU and 4 GPUs, using a set of OpenCL applications
and benchmarks. We find that our framework allows the
transparent utilization of all heterogeneous resources with
negligible overhead (1.24% on average over hand-mapped
to the target system versions of the codes). At the same
time, it enables the execution of problem sizes which could
not be executed on homogeneous, or less complex heteroge-
neous systems, due to their high computational and memory
requirements.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.3.4 [Programming Languages]: Processors - Code
generation, Compilers,Optimization, Run-time environments

General Terms
Algorithms, Performance

Keywords
Polyhedral Analysis, Memory Access Pattern Estimation,
OpenCL, Run-time

PCI2015 October 01 - 03 2015, Athens, Greece
.

1. INTRODUCTION
Heterogeneous systems gain popularity in high performance

computing due to the performance they offer, combined with
exceptional power efficiency. However, on such systems the
programmer is not only responsible for expressing and ex-
ploiting parallelism, but has also to invest significant effort
for memory management across devices, address spaces and
often levels of the memory hierarchy within devices. To
make things worse, heterogeneous systems can vastly dif-
fer in terms of configuration, often necessitating significant
rewriting whenever applications need to be ported to an-
other system.

Although sophisticated data distribution and management
is necessary, it is clearly worth investing in automated tech-
niques that alleviate this additional burden from program-
mers. In this paper we introduce a framework which auto-
mates the task of data management for OpenCL programs
across multiple devices of a heterogeneous system. Our ap-
proach applies compile-time analysis, based on the polyhe-
dral model, to associate computations with the data they
consume / produce. The results of the analysis are then
used by a runtime system which automates the task of data
management. Beyond automating the task of data manage-
ment, our framework enables partitioning computations to
all computational devices of heterogeneous systems accord-
ing to the computational power and memory capacity of each
device, thus facilitating the exploitation of all computational
and memory resources of the system.

Our contributions are (a) a combined compile- and run-
time methodology to estimate the association of data to
computations, (b) an implementation for OpenCL programs,
automating data management and allowing kernel partition-
ing and execution on multiple devices, and (c) a performance
evaluation of our automated approach, as well as a compar-
ison against NVidia CUDA Unified Memory, an industrial
solution to the problem of automating data management for
GPU-based heterogeneous systems.

We find that our methodology introduces negligible over-
head of 1.24% on average compared with programmer con-
trolled data management. It significantly outperforms NVidia
Unified Memory which, on the same set of codes, results to
an average overhead of 614%. At the same time, it enables
the execution of problem sizes that could not be tackled by
homogeneous or less complex heterogeneous systems, due to
their high computational and memory requirements.

The rest of the paper is organized as follows: We briefly
introduce the polyhedral model in Section 2. In Section
3 we present our algorithm and in Section 4 we evaluate

our approach and compare it against NVidia CUDA Unified
Memory (UM). Finally, we discuss related work in Section
5, followed by our conclusions in Section 6.

2. POLYHEDRAL MODEL
The polyhedral model (also called polytope model) is a

mathematical framework mostly used for loop nest analy-
sis in compiler optimization. The polyhedral method treats
each loop iteration within nested loops as lattice points in-
side mathematical objects called polyhedra (polytopes). Trans-
formations on the polyhedra translate to source code trans-
formations of the represented source code tree. This char-
acteristic makes polyhedral analysis a great toolkit for com-
piler optimizations, because it provides the means to easily
manage and reform loops.

2.1 Polyhedron
A n-polyhedron (or polytope) is a geometric object with

flat sides in the N-Dimensional space. Formally, a polyhe-
dron domain (D) can be thought of as the intersection of a
finite set of closed linear half-spaces. This representation is
specified by a system of equalities and inequalities:

D : {x ∈ Qn|Ax = b, Cx ≥ d}

2.2 Polyhedral Analysis
Polyhedral analysis is based on representing nested loop

structures, along with their program statements, in the form
of polyhedra. It is the basis of powerful methods present in
popular compilers like LLVM/CLANG [6], and GCC [11].
By constructing and transforming polyhedra the compiler
can identify dependencies between statements, produce op-
timized instruction schedules and discover parallelism [6, 11,
1, 2].

Upon analysis of the input source code, Static Control
Parts (SCoPs) are identified. SCoPs are source code snip-
pets that hold a set of characteristics necessary in order for
polyhedral analysis to be applicable:
• All variables in the SCoP are either iterators used in

the underlying nested loops, (b) parameters to the
SCoP, or (c) affine expressions of the previous two.
Parameters maintain the same value throughout the
execution of the SCoP.
• Loop bounds must be either (a) constants, or (b) affine

combinations of loop iterators, parameters and con-
stants. This applies to the conditions of conditional
statements as well as expressions used to index arrays.
• All data flow between statements in the loop must be

explicit. In other words, statements may not commu-
nicate via shared variables invisible to the compiler.

Each polyhedron point corresponds to the execution of
a statement or, in the context of this paper, to the access
of a variable. This characteristic enables the compiler to
perform manipulation of program structures through poly-
hedral transformations, while maintaining the original func-
tionality as well as guaranteed code equivalence.

2.3 Polyhedral analysis example
We show a simple example of applying polyhedral analysis

to the small SCoP of Listing 1, which consists of two nested
loops. This SCoP is translated to the constraints:
2 ≤ i ≤ min(M,−1 + N + 2). These can be further refined
to the following: 2 ≤ i ≤M , and 2 ≤ i ≤ N + 1.

1 for (i=2; i<=min(M,-1+N+2); ++i) {
2 S1(i);
3 }

Listing 1: Simple SCoP

A polyhedron can be represented by a matrix with (1 +
Output + Input + Parameters + 1) columns and as many
rows as the number of constraints which form the polyhe-
dron. The first column indicates whether the row describes
an equality or inequality (value 0 or 1 respectively). In the
context of this paper output dimensions indicate array in-
dexes, in the example below it indicates the value range of
iterator i, the only output dimension is the actual value of
i. Input dimensions are essentially iterators of the SCoP. A
set of column vectors follow it, one for each iterator present
in the polyhedron domain. The next set of column vectors
represent the parameter coefficients. The final column vec-
tor stores the constant component of the affine constraints.
The matrix representation of the polyhedron describing the
possible values of iterator i in Listing 1 is:

0 −1 1 0 0 0
1 0 1 0 0 −2
1 0 −1 1 0 0
1 0 −1 0 1 1


If, for example, one would like to add the additional con-

straint 2 ∗ i + 3 ∗ N + 4 ∗M − 1 ≥ 0, the matrix would be
extended with the following row (constraint)[

1 0 2 3 4 −1
]

3. MEMORY ACCESS PATTERN ANALYSIS
AND BUFFER MANAGEMENT

In this Section we introduce a methodology for identifying
the memory footprint of computations and automating the
data transfers between devices of a heterogeneous system.
This also enables semi-automatically partitioning parallel
work at chunks of different – potentially finer – granularity
than the one specified by the programmer, in order to fully
exploit all available accelerators. Apart from enabling par-
allel execution of chunks on different devices, our approach
identifies the exact subset of data used by each chunk, thus
allowing execution on devices with limited memory. In the
context of this paper we apply our approach on OpenCL
kernels. We refer to kernels executing fractions of the total
computation workload as sub-kernels.

Our methodology consists of two phases. Polyhedral anal-
ysis is used in the compile-time, offline phase, to produce
parametric estimations of the data ranges accessed by each
sub-kernel, as well as transformations to the original code.
At the run-time phase, after the parameters are known, data
are automatically partitioned and transferred – in an opti-
mal, coalesced manner – to/from devices.

Throughout this section we use part of a Hybrid, Monte-
Carlo Partial Differential Equation (Hybrid PDE) solver [12]
(MC). MC is explained in detail in Section 4.

3.1 Offline phase
To develop the offline phase we use the Polyhedral Extrac-

tion Tool (PET) [14], ISL [13] and PolyLib [15] frameworks.
PET produces a polyhedral model from C source code. ISL

1 kernel void DoRandomWalks2D(
2 global float *D, global float *x, global float *result,
3 unsigned int num_walks, float btol, unsigned int nodes)
4 {
5 private long me = get_local_id(0), us = get_local_size(0);
6 private long __group_id_x = get_group_id(0);
7 /* Some variable declarations and statements omitted */
8 if (__group_id_x < nodes)
9 {

10 _x[0] = x[__group_id_x*2];
11 _x[1] = x[__group_id_x*2+1];
12 for (i=0; i<num_walks; ++i)
13 {
14 _x[0] = x[__group_id_x*2];
15 _x[1] = x[__group_id_x*2+1];
16 perform_random_walks(num_walks, _x, _D);
17 }
18 barrier(CLK_LOCAL_MEM_FENCE);
19 if (me == 0)
20 {
21 d = compose_d();
22 result[__group_id_x] = d;
23 }
24 }
25 }

Listing 2: Original MC kernel.

1 /* ocl_offsets: Holds the offset values (Dynamic mode) */
2 kernel void DoRandomWalks2D(constant const int *ocl_offsets,
3 global float *D, global float *x, global float *result,
4 unsigned int num_walks, float btol, unsigned int nodes)
5 {
6 private long me = get_local_id(0), us = get_local_size(0);
7 private long __group_id_x = get_global_id(0)/us;
8 /* Some variable declarations and statements omitted */
9 if (__group_id_x < nodes)

10 {
11 _x[0] = x[(__group_id_x-x0y)*x0w -x0o];
12 _x[1] = x[(__group_id_x-x1y)*x1w +1 -x1o];
13 for (i=0; i<num_walks; ++i)
14 {
15 _x[0] = x[(__group_id_x-x2y)*x2w -x2o];
16 _x[1] = x[(__group_id_x-x3y)*x3w +1 -x3o];
17 perform_random_walks(num_walks, _x, _D);
18 }
19 barrier(CLK_LOCAL_MEM_FENCE);
20 if (me == 0)
21 {
22 d = compose_d();
23 result[__group_id_x -result2o] = d;
24 }
25 }
26 }

Listing 3: Modified MC kernel.

is a library for manipulating quasi-affine sets and relations,
providing tools for powerful and compact representation of
polyhedra. Finally, PolyLib is a library for manipulating
parametric polyhedra.

The output of the offline algorithm is a set of parametrized
ranges for all array accesses in a sub-kernel. Each range is
also tagged with information to describe the type of each
access: read or write. The rest of this subsection will focus
on the offline phase of our algorithm which is illustrated in
Figure 1.a.

3.1.1 Array indexes de-linearization
We begin the analysis by examining each statement which

involves accesses to array elements. Our framework handles
1D and 2D accesses as long as they follow the linearized
array[row∗width+column] notation. However, as specified

Inject initial dimensions
and constraints

Elimination of
input dimensions

Polyhedra minimization

Code transformations
and code generation

Coalesce overlapping/
adjacent SBs

Allocation of memory buffers

Memory buffer transfer
 to devices

Execute OpenCL kernels

Transfer memory
to host

a) Compile-time analysis b) Run-time analysis

Array indexes
de-linearization

Compile OpenCL kernels

Figure 1: Proposed Hybrid methodology.

in section 2.2 the linearized notation is ”illegal” for polyhe-
dral analysis in the general case because it may not be affine.
Consequently such accesses cannot be directly represented in
the polyhedral model. We overcome this by extending PET
to de-linearize array accesses, considering row and column
as independent indexes and width as an extra parameter.

3.1.2 Inject initial dimensions and constraints
At a higher level, an OpenCL kernel can be viewed as

the innermost body of a six-level nested loop which repre-
sents the kernel execution geometry. The three innermost
loops correspond to the execution of work-items within a
work-group, whereas the three outer loops correspond to the
execution of work-groups within a grid. The geometry infor-
mation however, is not explicitly defined within the kernel
source code. In this step, we introduce the kernel execution
geometry constraints to the polyhedra produced by PET to
represent each memory access.

3.1.3 Polyhedra minimization
This step projects out all superfluous constraints, namely

constraints not necessary for defining the specific memory
access represented by each polyhedron. Removing those
constraints, corresponding to unnecessary dimensions of the
polyhedron, involves recursively identifying them and finally
projecting them out using the Fourier-Motzkin elimination
process [16] offered by ISL. This step is not necessary for the
correctness of our analysis, however it significantly reduces
its execution time.

3.1.4 Elimination of input dimensions
The next step of the algorithm is to project out all input

dimensions using the Fourier-Motzkin elimination process.
All constraints related to those dimensions are converted to
constraints related to parameters. Parameters are defined at
run-time and have constant value throughout the execution
of the kernel (which is not the case for input dimensions).
Therefore memory accesses defined using parametric expres-
sions are in-ambiguous at execution time. All resulting poly-
hedra consist solely of output and parameter dimensions.

3.1.5 Code transformations and generation

As mentioned earlier, the goal of our methodology is to
partition the original computation to smaller chunks, and
associate each chunk with the exact subset of the original
input or output data required for or produced by its execu-
tion. Data access indexes have, therefore, to be rewritten,
in order to correctly map to the specific, smaller buffers ac-
companying each chunk of computation.

More specifically, we modify the source code so that ac-
cesses are now of the form: array[(row − offset row) ∗
effective width+column−offset col]. The offsets offset row
and offset col, as well as the effective width take constant
values after the online phase of our analysis, namely at ex-
ecution time.

The modifications required for the MC kernel are shown
in listing 3. Changes to the original code appear in red.

Finally, a new function is generated, which calculates the
buffer ranges touched by each memory access in the pro-
duced chunks of computation, based on the original kernel
parameters and kernel execution geometry. This function
will be invoked by the runtime once per kernel execution
before the data allocation and management mechanisms.

3.2 Online phase
The online phase, depicted in Figure 1.b, takes place at

execution time, right before the compilation of the OpenCL
kernels1. The function discussed in Section 3.1.5 is executed
to generate the access ranges for each OpenCL device.

At this point we introduce two terms:
Memory Access Region: A MAR is extracted for each
polyhedron. It is the memory region which contains the po-
sitions touched by a specific memory access instruction, as
represented by the respective polyhedron.
Sub-Buffer: A SB is a memory region which will be allo-
cated on a compute device and contains at least one MAR.
It can be visualized as the bounding box of a set of MARs.

3.2.1 Coalescing of overlapping/adjacent SBs
During this step overlapping or adjacent SBs are coalesced

to allocate the required memory on the devices.
When memory coalescing takes place, two SBs will be

joined together. The effective width of the MARs con-
tained within the SB will be computed. For example con-
sider the Figure 2: two overlapping SBs each one consisting
of a single MAR are illustrated. The first one involves an
access to a 2D matrix which accesses rows 20 to 120 and
columns 30 to 130. The second 2D SB comprises a MAR
which involves rows 10 to 110 and columns 50 to 150. These
two 100x100 SBs overlap and are therefore candidates to our
memory coalescence scheme. If the bounding box of the SBs
contains fewer elements than the sum of elements in each ac-
cess then the memory coalescence is performed. The idea is
to merge SBs which are mapped to neighbouring or overlap-
ping memory regions. In this particular case, a coalescence

will provide a compression ratio of 2∗(100∗100)
110∗120 ≈ 1.52X com-

pared to allocating two separate memory regions, one for
each SB. The effective width of the MARs in the resulting
SB is 120.

3.2.2 Allocation of memory buffers
After all memory coalescing opportunities are explored,

the final memory buffer size for each array used in the OpenCL

1In OpenCL, kernels are compiled just-in-time, i.e. device
binaries are produced at execution time.

1 long foo(int array[], int width)
2 {
3 int row, column;
4 long dummy = 0;
5

6 for (row=10; row<120; ++row)
7 for (column=30; column<130; ++column)
8 dummy += array[row*width+column]
9 * array[(row+10)*width+(column+20)];

10

11 return dummy;
12 }

120
110

 20
 10

30 50 130 150

120
110

 20
 10

30 50 130 150

row

column

row

column

Effective width = 120

Figure 2: Memory coalescence example.

sub-kernel is allocated. This involves placing the output SBs
of the previous step in consecutive memory regions.

3.2.3 Memory buffer transfer to devices
Memory is transferred from the host to the devices if a

sub-kernel executes for the first time or the indexes accessed
by it have changed since its last invocation. This way, data
which should only be copied once on the device and used
multiple times, across consecutive executions of the sub-
kernel, are retained.

3.3 OpenCL Code transformation issues
Our approach supports two modes: Static and Dynamic.

Static should be used for kernels whose parameters remain
constant between subsequent invocations. Offsets are in-
jected into the kernel at the moment of just-in-time com-
pilation using #define directives to minimize the perfor-
mance overhead of index computations. Dynamic targets
cases where the thread topology or kernel arguments change
between consecutive kernel invocations. This mode, only
compiles each kernel once and uses a vector of offsets instead
of static #define directives. However, each read/write ac-
cess on a vector is penalized with three extra reads which
acquire the offset information, as well as two extra subtrac-
tions to apply the offsets. Common sub-expression elimina-
tion reduces this overhead to the lowest possible.

4. EVALUATION
For our experimental evaluation we used an Intel(R) Core

(TM) i7-4820K CPU clocked at 3.70GHz and four NVIDIA
GeForce GTX 680 GPUs. The system RAM is 32 GB and
each GPU has 2.0 GB on-device memory. We experimented
with 4 benchmarks. MC is an alternative method of ap-
proaching multi-domain, multi-physics problems. It enables
the solution of a PDE in a subdomain of the original prob-
lem. The core kernel of this application performs random
walks from points of the subdomain boundary to the bound-
ary of the original domain, in order to estimate the bound-
ary conditions for the subdomain. Sobel is a filter used for

Multi-Device OpenCL
Benchmark Single CPU Single GPU Manual Framework Static Framework Dynamic

Sobel 7.661 X 1.384 1.401 1.438
MC 1714.369 50.544 14.181 14.202 14.458

Matrix Mult 342.839 X 18.001 18.153 18.216
Gesummv 1.998 X 0.505 0.502 0.5

Table 1: Execution times (in seconds) for different execution and data management scenarios. Entries marked
as X represent configurations which failed due to lack of memory on the device.

edge detection in images. Gesummv is part of the Polybench
benchmark suite[5]; it performs two matrix vector multipli-
cations and then adds the results to produce a new vector.
Finally, we use a matrix multiplication kernel. Before each
experiment we profile the applications to discover the op-
timal workload partition between the CPU and the GPUs.
The hybrid compile- and run-time analysis automatically
manages data allocations and transfers.

In Table 1 we summarize the execution times of the OpenCL
implementation of all applications on the multicore CPU
(using all cores), a single GPU and a multi-GPU setup. In
the latter case we report the performance of both a manual
data management implementation and that of our frame-
work using either the static or the dynamic strategy. Our re-
sults indicate the necessity of utilizing all available resources
on a heterogeneous system to achieve optimal results. For
applications such as Sobel, Matrix Mult and Gesummv the
memory footprint – 7.32 GB, 2.19 GB and 4.29 GB – can
easily exceed the capacity of a single GPU. MC, on the other
hand, is compute bound. In this case the execution time
rather than the memory footprint is the bottleneck; GPU
acceleration decreases execution time by 33.91 times com-
pared with the multithreaded CPU implementation, how-
ever combining all 4 GPUs results to a 118.58x speedup.

Figure 3 depicts a comparison of the overhead of our
methodology and a runtime-only memory management tech-
nique, the Unified Memory (UM) feature of NVIDIA CUDA,
against manual data management implementations in OpenCL
and CUDA respectively. Our framework comes at an aver-
age 1.24% execution time overhead compared with the man-
ual data management in OpenCL. This overhead is due to
the fact that index calculations on memory access state-
ments have to be modified to account for the automated
data layout. An example case of such changes is illustrated
in listing 3. In UM, managed memory is shared by both
CPU and GPU using a single pointer to data allocated on
pinned memory on the Host. The data are managed between
devices at the granularity of pages, without programmer in-
tervention. We found that the overhead of using UM in con-
junction with multiple GPUs is on average 614% compared
with a CUDA implementation with manual data manage-
ment. The overhead becomes higher in cases of true or false
sharing of the same memory page by multiple devices. This
happens because CUDA UM uses a single writer scheme to
ensure memory coherence. We should point out that CUDA
UM operates on memory pages pinned in physical memory,
the number of which is typically limited by the operating sys-
tem. In our experiments, we had to scale-down problem sizes
up to 4 times compared with the OpenCL counterparts, in
order for CUDA to succeed in allocating the required pinned
memory.

Finally, we evaluated the overhead of our framework against
manual data management implementations in terms of the

Sobel Monte Carlo Matrix mult Gesummv
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5

0
200
400
600
800
1000
1200
1400
1600

Static Dynamic UM

F
ra

m
e

w
o

rk
 o

v
e

rh
e

a
d

 (
%

)

U
M

 o
v

e
rh

e
a

d
 (

%
)

Figure 3: Comparison of our framework overhead
and NVidia CUDA UM against multi-device imple-
mentations of the benchmarks using manual data
management.

volume of data transferred. The static version of our frame-
work allocates and transfers the exact same amount of data
as the hand-mapped. versions of the benchmarks. The dy-
namic version allocates and transfers an additional small
buffer (ocl offsets[]) to each device which is however just few
hundreds of bytes. This is orders of magnitude smaller than
the data footprint of problems one would typically consider
solving on a multi-GPU system.

5. RELATED WORK
We are aware of a few other proposals regarding com-

munication code generation targeting hybrid platforms with
distributed memory architectures.

The authors of [3, 4] use the polyhedral model to split a
single task to computational tiles. They, too, discover the
dependencies between different tiles and produce code that
manages the data transfer between host and devices. Their
approach focuses on reducing data transfers by only sending
data which are essential for each computation. However,
they make the assumption that each device has allocated
enough space to hold all data used by the original task, even
though a single computational tile may use just a subset of
these data. Therefore, this approach is not applicable if the
full working set of the original kernel does not fit in the
memory of each device.

In [17] the authors apply polyhedral analysis to discover
the bounds of memory accessed by a source code and trans-
form it in order to minimize the amount of memory allo-
cated. The proposed solution manages to reduce memory
allocation, however at the expense of increased use of tem-
porary variables. This excessively increases register pressure
on GPUs, thus significantly penalizing performance. Our
methodology is a best effort approach towards fine-tuning
memory allocation close to the minimum required size, with-
out however exercising pressure to other resources.

Additional works [7, 8, 10] target executing code on a

single GPU. All three frameworks allocate memory for the
entire data range on all devices, however they intelligently
manage data transfers between the CPU and GPU.

Finally, [9] is a framework designed to partition a sin-
gle OpenCL kernel over multiple GPUs while maintaining
the image of a single compute device for the software devel-
oper. The authors split the kernel onto multiple devices at
run-time, by introducing a sampling phase before the actual
kernel invocation to estimate memory access bounds.

6. CONCLUSIONS
We have introduced and implemented a methodology us-

ing polyhedral analysis for automating data management on
heterogeneous systems.

From the experimental evaluation it is evident that runtime-
only approaches – as is the case with CUDA UM – are
not capable of efficiently handling the task of data man-
agement on heterogeneous systems. Similarly, compile-time
approaches lack the necessary information and flexibility.
The proposed hybrid compile- and run-time method offers
the necessary flexibility. At the same time it introduces
negligible execution-time overhead, as the main part of the
analysis is carried out by the compiler.

We plan to further expand our analysis to extract inter-
kernel data flow. Beyond GPUs, such a framework would be
invaluable for FPGA accelerators. Memory on such devices
is organized as small memory islands distributed throughout
the silicon and it is critical to both intelligently distribute
data close to the logic that consumes them, and to identify
data movement between different logic blocks in order to
properly size and instantiate memory buffers.

Acknowledgments
This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: THALES grant num-
ber MIS 379416.

References
[1] C. Bastoul. Code generation in the polyhedral model

is easier than you think. In Proceedings of the 13th
International Conference on Parallel Architectures and
Compilation Techniques (PACT), 2004.

[2] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,
and C. Bastoul. The polyhedral model is more widely
applicable than you think. In Compiler Construction,
pages 283–303. Springer, 2010.

[3] U. Bondhugula. Automatic distributed-memory par-
allelization and code generation using the polyhedral
framework. Technical report, Tech. Rep. 2011-3, De-
partment of Computer Science and Automation, Indian
Institute of Science, 2011.

[4] R. Dathathri, C. Reddy, T. Ramashekar, and U. Bond-
hugula. Generating efficient data movement code for
heterogeneous architectures with distributed-memory.
In Proceedings of Conference on Parallel Architectures
and Compilation Techniques (PACT), pages 375–386.
IEEE, 2013.

[5] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula,
and J. Cavazos. Auto-tuning a high-level language tar-
geted to gpu codes. In Innovative Parallel Computing
(InPar), 2012, pages 1–10, May 2012.

[6] T. Grosser, H. Zheng, R. Aloor, A. Simbürger,
A. Grösslinger, and L.-N. Pouchet. Polly-Polyhedral
optimization in LLVM. In Proceedings of the First In-
ternational Workshop on Polyhedral Compilation Tech-
niques (IMPACT), volume 2011, 2011.

[7] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and
D. I. August. Dynamically managed data for CPU-
GPU architectures. In Proceedings of the Tenth In-
ternational Symposium on Code Generation and Op-
timization (CGO), pages 165–174. ACM, 2012.

[8] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson,
S. R. Beard, and D. I. August. Automatic CPU-GPU
communication management and optimization. ACM
SIGPLAN Notices, 46(6):142–151, 2011.

[9] J. Kim, H. Kim, J. H. Lee, and J. Lee. Achieving
a single compute device image in OpenCL for multi-
ple GPUs. In Proceedings of the 16th ACM sympo-
sium on Principles and practice of parallel programming
(PPoPP), pages 277–288. ACM, 2011.

[10] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil.
Fast and efficient automatic memory management
for GPUs using compiler-assisted runtime coherence
scheme. In Proceedings of the 21st international con-
ference on Parallel architectures and compilation tech-
niques (PACT), pages 33–42. ACM, 2012.

[11] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. A. Silber,
and N. Vasilache. Graphite: loop optimizations based
on the polyhedral model for gcc. In proceedings of the
4th gcc developper’s summit, pages 179–198, June 2006.

[12] M. Vavalis and G. Sarailidis. Hybrid-numerical-PDE-
solvers: Hybrid Elliptic PDE Solvers. http://dx.doi.

org/10.5281/zenodo.11691, Sep 2014.

[13] S. Verdoolaege. isl: An integer set library for the poly-
hedral model. In Mathematical Software–ICMS 2010,
pages 299–302. Springer, 2010.

[14] S. Verdoolaege and T. Grosser. Polyhedral extraction
tool. In Proceedings of Second International Workshop
on Polyhedral Compilation Techniques (IMPACT’12),
2012.

[15] D. K. Wilde. A library for doing polyhedral operations.
Parallel Algorithms and Application, 15(3-4):137–166,
2000.

[16] H. P. Williams. Fourier-Motzkin elimination extension
to integer programming problems. Journal of combina-
torial theory, series A, 21(1):118–123, 1976.

[17] T. Yuki and S. Rajopadhye. Canonic Multi-Projection:
Memory Allocation for Distributed Memory Paralleliza-
tion. 2011.

