
Dynamic Cloud Resources Allocation on
Multidomain/Multiphysics Problems

Niki Sfika, Aigli Korfiati, Christos Alexakos,
Spiros Likothanassis

Department of Computer Engineering and Informatics,
University of Patras,

Patras, Greece
{sfika, korfiati, alexakos, likothan}@ceid.upatras.gr

Konstantis Daloukas, Panagiota Tsompanopoulou
Department of Electrical and Computer Engineering,

University of Thessaly,
Volos, Greece

{kodalouk, yota}@inf.uth.gr

Abstract— The solution of multidomain/multiphysics
problems is a computationally and memory demanding process,
especially for large-scale differential equations. In this paper, we
propose a cloud application that provides users a solution
environment for multiphysics/multidomain problems utilizing
cloud technologies that manage pre-existing hardware, network,
operating system and applications. Particularly, according to the
problem and its computational demands, the user can have the
results from any place and any device without any other concern.
The user sets the problem’s parameters, chooses the solution
method that fits better to the specific problem and finally gets the
problem solution. The application dynamically allocates the
minimum possible resources automatically in the background
without the user’s interference.

Keywords— cloud computing, multidomain/multiphysics
problems, dynamic resources allocation, problem solving
environment

I. INTRODUCTION
Cloud Computing is a new delivery model of computing

services over the Internet. Cloud technologies can provide
reliable solutions on complex and big data analysis problems
[1]. In the area of processing data from real-life complex
physical systems, such as gas turbine engine, air pollution or
underwater acoustics, computationally demanding differential
equation solving methods are required [2]. Utilization of cloud
computing technologies for fast and reliable mathematical
processing of continuously derived data from such physical
systems can conclude to integrated systems that extract
valuable information in each case.

Cloud computing is a new paradigm in the area of ICT. It
refers to the consumption of all available computational
resources (such as networks, applications, servers, storage and
other computational resources) as a utility which can be
accessed via web by anyone. What discriminates cloud
computing from existing techniques is a series of
characteristics, such as on demand provision of network

access to the resources pool and flexible and adaptable service
management by the cloud provider. In cloud computing, the
user can increase or decrease the capacity and consume as
many resources as he actually needs, depending on the
computational requirements of a specific problem. Concerning
adaptability, new applications and features can be deployed
significantly faster than with traditional models. In reference
to the resource benefits, information is not hosted on
individual computers but on the cloud, so it can be accessed
remotely as long as there is Internet connection and users and
systems can collaborate simultaneously on this information
[3].

From the software developers’ point of view, cloud
computing can be considered as an extension of distributed
models of software development. More precisely, the software
is composed by interconnected third party components,
multiple partners (users or systems) can have the ownership,
and the execution can take place in multiple computers in a
distributed environment. Virtualization is a technology that
enables cloud computing. It simulates network resources,
storage devices, operating systems and hardware platforms.
Actually, operating systems and applications are hardware-
independent and virtual machines can be offered to any
system.

The simulation and modeling of complex physical
systems, such as the dissemination of primary brain tumors
(gliomas) and the saltwater intrusion into freshwater aquifers
due to overpumping, usually involve many components [4],
[5]. A physical system in the real world normally consists of a
large number of components that have different shapes, obey
different physical laws and design constraints, and interact
through geometric and physical interfaces. Mathematically,
each component is modeled by a partial differential system
with various formulations for the geometry, the partial
differential equation (PDE) and the interface/boundary
conditions.

The approaches for modeling and simulating complex
physical systems can be divided to (1) domain decomposition,
(2) Schwarz splitting and (3) interface relaxation techniques.
The interface relaxation (IR) methods’ main advantage is that
they treat a multidomain and multiphysics (different PDE

The present research work has been partially supported by the European
Union (European Social Fund ESF) and Greek national funds through the
Operational Program Education and Lifelong Learning of the National
Strategic Reference Framework (NSRF) - Research Funding Program:
THALIS. Investing in knowledge society through the European Social Fund
(MIS 379416).

2015 3rd International Conference on Future Internet of Things and Cloud

978-1-4673-8103-1/15 $31.00 © 2015 IEEE

DOI 10.1109/FiCloud.2015.59

31

operators are applied on different subdomains) problem as a
loosely coupled system of subproblems consisting of much
simpler (concerning both the geometry and the differential
operator) PDE problems. More specifically, in the IR methods
the PDE domain is decomposed into subdomains, derived by
the physics or for parallelization purposes while initial guesses
are set on the interfaces between the subdomains. The
subproblems are solved independently and new values on the
interfaces are computed by particular IR methods (forcing the
correct conditions for the problem) iteratively until
convergence is succeeded [2], [6], [7]. The inherent
parallelism in IR methods makes them ideal for mapping onto
parallel architectures and they are anticipated to perform really
well when combined with cloud technologies.

Our proposed cloud application is a multiphysics/
multidomain problem solving environment implementing the
Interface Relaxation methodology. The user provides a
problem as input, chooses the IR method that fits better the
specific problem and has access to the solution in a close-to-
optimal execution time, from any place and any device
without any other concern. At the same time, the application
allocates the minimum possible resources automatically in the
background without user’s interference.

The proposed approach is presented in detail in the rest of
the paper. In Section II some significant technologies and
related work in the area of cloud computing and interface
relaxation methods are presented. Section III describes the
implementation of the proposed application and Section IV
contains the results of the experiments. Finally, Section V
concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Cloud Computing
Cloud Computing is an emerging model that provides

access to all types of computational resources (consuming
them as a utility) to end-users according to their demands.
Cloud computing has such a tremendous growth due to the
centralized storage, memory, processing and bandwidth which
conclude to a more efficient cost model [8].

Cloud Computing is divided into three delivery models: (i)
Infrastructure-as-a-Service (IaaS), where on demand virtual
server machines can be offered with their own storage and
network, (ii) Platform-as-a-Service (PaaS), where storage,
operating system, hardware and network can be offered to the
user’s existing or new applications and (iii) Software-as-a-
Service (SaaS) where an application can be offered as a
service on demand. SaaS provides the user both the hardware
and the appropriate software through a front-end portal.

Lately, a significant number of approaches that utilize
cloud computing technologies for scientific data analysis have
been proposed by both industry and academia. Specifically, in
the area of scientific computing many approaches have been
introduced for the solution of scientific problems [9], [10]. A
benchmark evaluation has showed that cloud computing can
provide the means for significant improvement of the
performance of scientific analysis problems [11]. SciCloud
[12] is an important step on how an application that takes

advantage of cloud computing can be beneficial for solving
computationally intensive scientific, mathematical and
academic problems.

Cloud computing technologies have been used in many
approaches that require dynamic allocation of resources. In
most of these cases, the requirements refer to high capacity of
memory and CPU. Cloud’s scalability facilitates such
applications in many use cases of scientific data analysis,
permitting among others, the execution of modern high-
performance parallel algorithms [13]. As an example, in
bioinformatics, cloud-based solutions are anticipated to permit
high performance analysis of large datasets of biological and
genetic data [14]. In medicine, there are paradigms of tools
which employ cloud technologies for delivering demanding
medical image analysis results to the end-users directly to
their working devices [15], [16]. Also, the analysis of
geographic data requires a large number of resources, and
cloud-based approaches are used leading to a significant
performance improvement [17], [18].

The proposed application aims to a software tool delivered
according to the SaaS model elaborating the scalability
capability provided by the IaaS model. Thus, the software
platform Cloudstack has been used for delivering IaaS
services. CloudStack is open source software which provides
reliable, flexible and scalable cloud orchestration [19]. It also
comes with a management server for hypervisor hosts and, as
a result, it manages the resource pool, the network and the
storage as an IaaS cloud platform. In the proposed application
the computational resources (memory, processor and network)
are assigned to each problem according to its requirements.

B. Interface Relaxation methodology
Interface Relaxation methods serve for the efficient

solution of multidomain PDEs through an iterative procedure
[2], [16], [17]. Consider the composite differential problem
defined by

�� � �����	
�	����� � ������	 (1)

where �� is a prescribed function on the boundary���,
� � � ������

��� and ��� � � ��� � � are open sets such that,
� ���
��� � � while ! is the differential operator which might

be different in each subdomain ��. With the IR methodology,
the above problem can be replaced with the following loosely
coupled system of differential problems.

�"�" � �"����	"
#"$� � %����&�	" ' �	$(
�	����)* + � (2)
� � �"����	" ' �	

where !�� ,� and ���, for � � �� � � � are the restrictions of !� ,
and �� respectively on each subdomain �� and -�. is a
condition on the interface between subdomains �� and �.
which enforces proper coupling. This coupling is responsible
for preserving the physical properties of the original problem
(i.e., continuity, smoothness or jumping). The differential

32

operators and the coupling can be of any kind. However, this
study is focused, but not limited, to the most common case of
second order elliptic differential equations with smooth global
solution. Thus, continuity of the solution and its first (normal)
derivative should be imposed on the interfaces. As we can
observe, the solution of (1) through (2) requires solution of
each subdomain problem and combination of the computed
solutions on the interfaces.

Before presenting the considered IR methods, let’s
introduce (only for explaining purposes) a type of geometry
that clarifies the two methods in an easier way. Consider that
the global domain � consists of subdomains which are
adjacent rectangles along the x-axis. Then the interfaces are
vertical lines and each subdomain has one common boundary,
i.e., interface with its neighboring one or two (left and/or
right) subdomain(s). GEO [7] is the first interface relaxation
method implemented in our system and it calculates the values
of the solution on the interfaces between different subdomains
while it guarantees fast convergence. The new relaxed
solution on an interface is obtained by adding to the old one a
geometrically weighted average of the normal boundary
derivatives of the adjacent subdomains. Specifically, the
solution at iteration�/ 0 �, �123�4, is given from the following
equations:

�153�4 � �154 6 7 89:;
1<4

9= 6 9:1<4
9= > � ���?@�A���A@B�CD@ (3)

�153�4 � �154 6 7 89:1<49= 6 9:E1<4
9= > � ���B�FGA���A@B�CD@ (4)

H � %���I� �

where �124 and JK
1L4
JM is the computed solution and its normal

derivative on the interface, while JKN
1L4

JM ,6JKO1L4
JM are the values

of the outward normal derivatives on the interface from the
two adjacent subdomains, all in the previous iteration. � is a
relaxation parameter used to accelerate convergence.

ROB [6] is another interface relaxation method based on
Robin interface conditions to transmit information across
boundaries. One solves the local PDE on the subdomains
using Robin conditions on the interface lines by matching a
combination of Dirichlet and Neumann data from neighboring
subdomains. Specifically, the solution at iteration / 0 �,
�123�4, has to obey (5) on the subdomain’s left interface and
(6) on the right.

69:1<PQ4
9R 0 S�153�4 � 6 9:;1<4

9R 0 S�T154 (5)
9:1<PQ4

9R 0 S�153�4 � 9:E1<4
9R 0 S�U154 (6)

where �V124 and JKN
1L4

JW is the solution and its derivative on the

left interface from the left adjacent subdomain, while �X124 and
JKO1L4
JW is the solution and its derivative on the right interface

from the right adjacent subdomain. � is a relaxation parameter
to accelerate convergence.

According to our knowledge, a small number of
implementations of IR methods can be found in the literature.
They use Matlab [7], [20]-[22], the Agents computing
paradigm over a network of heterogeneous workstations and
PELLPACK [6], [21], [23], the BOND agent middleware and
PELLPACK [24] and the Grasshopper agent middleware and
FORTRAN and C [4], [5]. These PSEs highly depend on the
agent platforms and PELLPACK [25]. A rather new
implementation free of such constraints is presented in [26]. It
uses the FEniCS [27] software for the solvers and RabbitMQ
[28] for the necessary communication.

III. PROPOSED CLOUD IMPLEMENTATION

A. System Architecture
The proposed application is based on the management of

the allocation of the cloud resources in order to create groups
of virtual machines for parallel processing. Furthermore, it
provides the appropriate interfaces to end-users and systems
for accessing the platform.

The major functional components of the architecture are the
following:

1. The Graphical GUI where each user has the ability to
register for a new account or log in to an existing one.
When logged in, users can define new problems by
inserting the appropriate input and choosing the desired
IR method for the problem solution. During the solution
process, they can review their problems’ solution status
and details. Furthermore, third party systems can access
the services provided by the application through a
simple HTTP API that is loosely based in the exchange
of JSON messages.

2. The Job Schedule Module which is responsible to
orchestrate problem execution on the cloud
infrastructure. Its duties consist of a) the resources
allocation needed by the Virtual Solver Nodes for the
problem execution, b) the deployment of the eligible
VMs along with their information, c) the initialization
of the problems and d) the deletion of the VMs after the
execution is finished.

3. The Job Monitor Module is an Advanced Message
Queue Server (AMQS) that handles the communication
between the entities of the system. AMQS is based on
the Advanced Message Queuing Protocol (AMQP)
which connects systems and manages the information
and messages exchange between them. A more
extensive interpretation is that with AMQP programs
and systems can produce and send messages, while
other programs and systems can receive them and
process them. In the present work RabbitMQ has been
used. RabbitMQ is a messaging broker based on the
AMQP and offering a common platform to send and
receive messages while these messages stay safe until
they reach their final destination.

4. The DataStore Module can be accessed from all the
system components and stores the input data, the results
and the intermediate data of the users’ problems.

33

5. The Virtual Solving Nodes are created by the Job
Schedule Module in order to start the problem
execution. During the execution, they inform the Job
Monitor Module about the state of the problem and
once they finish the execution, they send their final
results back to the Job Monitor Module. After job
completion they are deleted.

Fig. 1 depicts an overview of the proposed system’s
architecture with all the system’s modules and their
interactions, where dotted lines present communication
between modules. The AMQS infrastructure is utilized for the
communication between the various modules. AMQS-based
communication is used in the following interaction scenarios:
a) inside Virtual Solving Nodes for the interface values and b)
between the Virtual Solving Nodes and the Job Monitor
Module for progress monitoring.

Fig. 1. System architecture

B. Managing process execution
During runtime, the Job Schedule Module and the Job

Monitor Module are responsible for the resources allocation
and the process orchestration. Their processes are depicted in
Fig. 2 and Fig. 3, respectively. Both of the aforementioned
systems are running in the same VM in Cloudstack and they
perform a number of tasks.

At the beginning of its operation, the Job Schedule Module
checks the DataStore in order to obtain the required
information about the job queue. If the job queue is empty, it
remains idle until a new job comes in the queue. In case there
are more than one pending jobs, it selects the first job in
chronological order from the queue and initiates the process
for the problem solving. The first task in this process is the
calculation of the appropriate computational resources (VMs
for Virtual Solving Nodes) required for optimal performance
depending on the size of the input data and the available
resources in the cloud infrastructure. After this calculation, the

creation of the VMs that will act as the Virtual Solving Nodes
follows. These VMs are created based on pre-existing
templates including the software required for the problem
execution. When the problem has been executed, the Job
Schedule Module destroys the created VMs and moves to the
execution of a new job in the queue.

Fig. 2. Scheduler's process

After the Job Schedule Module initiates a job, the Virtual
Solving Nodes execution progress is monitored by the Job
Monitor Module. Through its connection with RabbitMQ, the
Job Monitor Module receives the current iteration of the
problem being solved and sends this information to the
DataStore as well for publishing to the users/systems. When
the job is finished, the Job Schedule Module marks the
problem as completed and stores the solution in the DataStore.
It remains idle until a new problem starts being solved.

C. Application Interfaces
The proposed platform is empowered with two interfaces

in order to interoperate with the rest ecosystem. The first is an
HTML graphical interface used by users for submitting
processing requests, evaluating their progress and accessing
results. A screen with a user’s submitted problems is presented
in Fig. 4. The second refers to third-party systems and it is an
API that can be invoked by HTTP requests over Internet.

The graphical user interface is simple and follows
responsive design guidelines in order to meet the desired level
of user friendliness. The responsive design is a collection of
techniques applied in the HTML code in order for the

34

application's screens to automatically be adapted to the screen
resolution of the user's device, even in small devices such as
tablets and smart phones. Thus, the proposed application can
be easily used from anywhere with the condition that users
have a mobile device with web browser and internet
connection. Fig. 4 depicts a screenshot from the application
where user can see the progress of the submitted jobs.

Third-party systems can invoke the HTTP-based API as
web service. The API is consisted of three major methods:

• setNewJob/{user-id}/{job-parameters} which
submits a new problem to the application's queue. The
response is informing the invoker for the success or
failure of the job submission.

• getUserJobs/{user-id} which returns the list of user's
submitted problems and their progress.

• getJobDetails/{user-id}/{job-id} which returns the
description of the submitted problem (input) and
information about the progress. If the job is completed,
a link to the final results is also provided.

For security reasons, additional parameters are sent by
each request. These parameters contain the authentication
credentials of the specific user account for the API and hash
code for the evaluation of the integrity of the request.

Fig. 3. Monitor's process

Fig. 4. Application's screen with user's submitted problems

D. Interface Relaxation implementation
The main characteristic of the interface relaxation

techniques is the abundant level of parallelism in the solution
process. In order to take advantage of such inherent
parallelism, we assign to each Virtual Solving Node the
solution of one subdomain and the subsequent update of the
values in the interface points. Considering the geometry
discussed in Section II.B for a 3 domains case, Fig. 5
describes the interaction of the solving nodes per iteration.
Specifically, Virtual Solving Node A handles the left
subdomain and the left-middle interface. Thus, we can achieve
full utilization of the computational resources found in a cloud
infrastructure.

Referring again to Fig. 5, the user defines the input
parameters through a form in the graphical interface. A Python
script in each VM generates the subdomain’s mesh (triangular
elements), applies the boundary conditions and the initial
guesses on the interfaces and defines the variational
formulation of the PDE problem. Then, the local solution and
its gradient are computed. Their values on the interfaces points
are sent to the VMs that handle the adjacent subdomains.
These VMs compute the new relaxed interface point values
based on selected IR method (GEO or ROB), which serve as
input for the subsequent solution of the corresponding
subdomains. A new iteration begins once the VMs that handle
neighboring subdomains have finished the communication
step regarding the computed solution and gradients.

An additional benefit of the proposed scheme is the
minimization of the communication overhead. The updated

35

interface values are computed on one of its adjacent
subdomains' node and therefore the communication is reduced
by half.

Fig. 5. Interface relaxation methodology: solving process and topology

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed methodology,

we employed the following elliptic PDE problem:

�� � 6YZ�1[� \4 0]Z�1[� \4 � �1[� \4����1[� \4 ^ 	���������(7)
�1[� \4 � �1[� \4����1[� \4 ^ �	

with ,1_� `4 and ��1_� `4 selected such that the true solution is:
�1[� \4 � @a1R3b4[1[6 �41[6 %cd4\1\ 6 %ce4 (8)

The problem consists of three subdomains. The interface

points are at _� � �
f and _Z � Z

f while�gZ � I. Seven grid sizes
are examined, according to seven different values of the
discretization parameter h, which is considered equal in both _
and ` direction. The number of interface points in each case
increases from 6 to 321 points. The left subdomain is
approximately four times larger than the middle, while the
right one is approximately two times larger than the middle
subdomain. The interfaces have the same number of points
and therefore are of equal workload. The considered problems
along with details, such as their discretization step and the grid
sizes for the left, middle and right subdomains are described in
Table I.

TABLE I. CONSIDERED PROBLEMS

Problem
Problems' Details

Discretization
Parameter

Left
Domain

Size

Middle
Domain

Size

Right
Domain

Size

Number of
Interfaces

Points
P1
P2
P3
P4
P5
P6
P7

0.1
0.05
0.025
0.0125
0.00625
0.003125
0.0015625

84
328
1134
4508
17655
69228
274134

24
88
294
1148
4455
17388
68694

44
168
574
2268
8855
34668
137174

6
11
21
41
81
161
321

For the evaluation of the application, we performed a

number of experiments for each test case. Experiments were
executed with a variety of given computational resources.
According to the results, in order to balance the tradeoff
between the minimum execution time and resources
allocation, it was decided that the best resource allocation
depends exclusively on the input datasets. Thus, the proposed

application was parameterized in order to adopt the following
rule in its decision for the resources allocation for each
subdomain:

if subdomain size <= 75000:

virtual solving node RAM = 1GB
virtual solving node processor = 1core, 2GHz

else if 75000 < subdomain size <= 150000:
virtual solving node RAM = 2GB
virtual solving node processor = 1core, 2GHz

else if subdomain size > 150000:
virtual solving node RAM = 4GB
virtual solving node processor = 1core, 2GHz

Table II presents the execution time in the proposed

application with both GEO and ROB IR methods implemented
for the test cases of Table I, using the aforementioned rule.

For comparison purposes, we also present the respective
execution times when the same implementations were
executed in 3 different predefined virtual machines, as
presented for the GEO method in [26]. The virtual machines
used for the experiments have 4 virtual cores and 2GB RAM
and are running in a XenServer virtualization environment
installed on a server with 2 x Intel(R) Xeon(R) CPU E5-2620,
2.00GHz.

TABLE II. EXECUTION TIMES OF ROB AND GEO

Problem
Execution Times

ROB GEO
P1
P2
P3
P4
P5
P6
P7

15.348
15.373
16.022
19.223
27.313
65.386

265.415

15.041
15.411
15.724
19.169
28.548
71.416

297.122

TABLE III. COMPARISON ANALYSIS TO VIRTUAL IMPLEMENTATIONS

Problem

Comparison Analysis

Virtual
Implementati

on ROB

Proposed
Cloud

Implementa
tion ROB

Virtual
Implementa
tion GEO

Proposed
Cloud

Implementa
tion GEO

P1
P2
P3
P4
P5
P6
P7

16.004
16.281
17.392
23.634
45.456

132.179
1099.05

15.348
15.373
16.022
19.223
27.313
65.386

265.415

15.495
16.068
18.140
25.595
51.808
166.633
735.731

15.041
15.411
15.724
19.169
28.548
71.416

297.122

As we can observe from Table III, the proposed

implementation provides a significant reduction in execution
time compared to the previous virtual implementation. The
reduction factor increases further with the increase of the
problem size, which is a testament of the efficiency of the
proposed methodology for the solution of large-scale
problems. In addition, the application provides an important

36

gain in resource utilization cost for every test case compared
to the virtual implementation with the predefined VMs. As a
result, both time and resource usage reduction has been
achieved with the proposed cloud application.

V. CONCLUSION
We have presented a cloud-driven application for the

solution of multidomain/multiphysics problems based on the
Interface Relaxation methodology. In this way a large problem
is split in smaller sub-problems, which are solved
independently exchanging information about their solution
iteratively until the initial large problem is solved. Through
the proposed application the users can define complex
multiphysics problems, select the appropriate PDE solvers for
the smaller sub-problems and IR method (ROB or GEO) for
the interfaces and get the computed solution of the global
problem.

The resources’ allocation is dynamic and is based on the
computational needs of each problem. The main benefits when
using the proposed application are that it allocates the
minimum possible resources, solves the problem in a close to
minimum execution time, and the resources allocation is
performed automatically in the background without the user’s
interference. In the near future, we plan to implement a larger
number of PDE solvers and IR methods, as well as to provide
support for more complex geometries. These modifications
will enable us experiment with model problems representing
the dissemination of primary brain tumors (gliomas) and the
saltwater intrusion into freshwater aquifers due to
overpumping.

REFERENCES
[1] Agrawal, D., Das, S., & El Abbadi, A, “Big data and cloud computing:

current state and future opportunities”, In Proceedings of the 14th
International Conference on Extending Database Technology, pp. 530-
533, ACM (2011)

[2] Tsompanopoulou, P., “Collaborative PDEs: theory and practice”, Ph.D.
thesis, Mathematics Department, University of Crete, Greece (2000)

[3] George C. Kagadis, Christos Kloukinas, Kevin Moore, Jim Philbin,
Panagiotis Papadimitroulas, Christos Alexakos, Paul G. Nagy, Dimitris
Visvikis, William R. Hendee, “Cloud computing in medical imaging”,
Vision 20/20 paper, Medical Physics, Vol. 40, No. 7, AAPM, 070901
(2013)

[4] Markus, S., Houstis, E., Catlin, A., Rice, J., Tsompanopoulou, P.,
Vavalis, E., Gottfried, D., Su K., Balakrishnan, G., “An Agent-Based
Netcentric Framework for Multidisciplinary Problem Solving
Environments”, International Journal of Computational Engineering
Science, 1, 33–60 (2000)

[5] Houstis, E.N., Catlin, A.C., Tsompanopoulou, P., Gottfried, D.,
Balakrishnan, G., Su, K., Rice, J.R., “GASTURBNLAB: A
Multidisciplinary Problem Solving Environment for Gas Turbine Engine
Design on a Network of Non-Homogeneous Machines”, J. of Comp. and
Applied Mathematics, 149(1), 83-100 (2002)

[6] Tsompanopoulou, P., Vavalis, E., “An Experimental Study of Interface
Relaxation Methods for Composite Elliptic Differential Equations”,
Applied Mathematical Modelling, 32 1620–1641 (2008)

[7] Tsompanopoulou, P., Vavalis, E., “Analysis of an interface relaxation
method for composite elliptic differential equations”, Journal of
Computational and Applied Mathematics 226 2, 370– 387 (2009)

[8] Iosup, A., Ostermann, S., Yigitbasi, M. N., Prodan, R., Fahringer, T., &
Epema, D. H., “Performance analysis of cloud computing services for

many-tasks scientific computing”, Parallel and Distributed Systems,
IEEE Transactions on, 22(6), 931-945 (2011)

[9] Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer, D., & Karl,
W., “Scientific Cloud Computing: Early Definition and Experience”, In
HPCC Vol. 8, pp. 825-830 (2008)

[10] Wang, L., Kunze, M., Tao, J., & von Laszewski, G., “Towards building
a cloud for scientific applications”, Advances in Engineering software,
42(9), 714-722 (2011)

[11] Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R., Fahringer, T., &
Epema, D., “A performance analysis of EC2 cloud computing services
for scientific computing”, In Cloud computing, pp. 115-131, Springer
Berlin Heidelberg (2010)

[12] Srirama, S., Batrashev, O., & Vainikko, E., “SciCloud: scientific
computing on the cloud”, In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, pp.
579-580, IEEE Computer Society (2010)

[13] Srirama, S. N., Batrashev, O., Jakovits, P., & Vainikko, E., “Scalability
of parallel scientific applications on the cloud”, Scientific Programming,
19(2-3), 91-105 (2011)

[14] Andreas, Holzinger, Matthias Dehmer, and Igor Jurisica, “Knowledge
discovery and interactive data mining in bioinformatics-state-of-the-art,
future challenges and research directions”, BMC bioinformatics
15.Suppl 6 (2014): I1.

[15] Rittner, Leticia, et al., "Web-based platform for collaborative medical
imaging research", SPIE Medical Imaging. International Society for
Optics and Photonics (2015)

[16] G. Kagadis, C. Alexakos, P. Papadimitroulas, N. Papanikolaou, V.
Megalooikonomou, D. Karnabatidis, “Cloud Computing Application for
Brain Tumor Detection”, European Congress of Radiology – ECR 2015,
European Society of Radiology (ESR), Vienna, March 4–8 (2015)

[17] Wang, L., Kunze, M., Tao, J., & von Laszewski, G., “Towards building
a cloud for scientific applications”, Advances in Engineering software,
42(9), 714-722 (2011)

[18] van Lew, Baldur, et al., "Interactive analysis of geographically
distributed population imaging data collections over light-path data
networks", SPIE Medical Imaging. International Society for Optics and
Photonics, (2015)

[19] Cloudstack, 2015. Available: http://cloudstack.apache.org
[20] Rice, J. R., Tsompanopoulou, P., Vavalis, E., “Interface relaxation

methods for elliptic differential equations”, Applied Numerical
Mathematics 32 2, 219–245 (2000)

[21] Rice, J.R., Tsompanopoulou, P. Vavalis, E.A., “Fine Tunning Interface
Relaxation Methods for Elliptic Differential Equations”, Applied
Numerical Mathematics, 43(4), 459–481 (2002)

[22] Chalkias, C., “Implementation of a Distributed System for the Solution
of MultiDomain / MultiPhysics Problems”, Diploma Thesis, Dep. of
Electrical and Computer Eng., Univ. of Thessaly, (2013)

[23] Drashansky T., “An Agent-Based Approach to Building
Multidisciplinary Problem Solving Environments”, PhD Thesis, Purdue
University, Computer Science Department, (1996)

[24] Bölöni, L., Marinescu, D.C., Rice, J.R., Tsompanopoulou, P., Vavalis,
E.A., “Agent Based Scientific Simulation and Modelling”, Concurancy:
Practice and Experience, 12, 845–861 (2000)

[25] Houstis, E. N., Rice, J. R., Weerawarana, S., Catlin, A. C., Papachiou,
P., Wang, K.-Y., Gaitatzes, M., “PELLPACK: A Problem Solving
Environment for PDE Based Applications on Multicomputer Platforms”,
ACM Transactions on Mathematical Software, 24, 30-73, (1998)

[26] Korfiati A., Tsompanopoulou P. and Likothanassis S., “Serial and
Parallel Implementation of an Interface Relaxation Method”, in
Proceedings of the 6th International Conference on Numerical Analysis,
pp 167-173 (2014)

[27] Logg , A., Mardal, K. A., Wells, G. N., et al., “Automated Solution of
Differential Equations by the Finite Element Method”, Springer, 2012

[28] Rabbitmq, 2015. Available:
http://www.rabbitmq.com/documentation.html

37

