

 MATENVMED : ΔΡΑΣΗ 3.2
 ΥΛΟΠΟΙΗΣΗ ΣΕ FPGAs ΚΑΙ ΠΟΛΥΠΥΡΗΝΑ ΣΥΣΤΗΜΑΤΑ
 Νικόλαος Μπέλλας, Χρήστος Αντωνόπουλος,

 Βασίλης Βασιλειάδης, Γεώργιος Ζήνδρος, Μανώλης Μαρούδας

 Πανεπιστήμιο Θεσσαλίας

 Select and study computationally demanding kernels of WP2 that can

potentially be accelerated when mapped to a massively parallel

platform (GPUs, FPGAs).

 Design and implement appropriate tools or utilize third-party tools to

help with mapping these kernels to such platforms (compilers, CAD

tools)

 Map the kernels to FPGAs and GPUs

 Performance analysis and comparison wrt. to CPU implementation

•Field Programmable Gate Array (FPGA) is the best known example of

Reconfigurable Logic

•Hardware can be modified post chip fabrication

•Tailor the Hardware to the application

–Fixed logic processors (CPUs/GPUs) only modify their software (via

programming)

•FPGAs can offer superior performance, performance/power, or

performance/cost compared to CPUs and GPUs.

2. FPGA TECHNOLOGY

 Advantages

 Hardware tailored to application: potential for (near) optimal

performance for a given application

 Various forms of parallelisms can be exploited

 Disadvantages

 –Programmable mainly at the hardware level using Hardware

Description Languages (BUT, this can change)

 –Lower clock frequency (< 300 MHz) compared to CPUs (~ 3GHz)

and GPUs (~1.5 GHz)

OPENCL VECTOR ADD EXAMPLE

 OpenCL kernel describes the computation of a work-item (e.g. add

two integer vectors)

 Each thread executes an instantiation of the OpenCL kernel code

with different idx.

 All random walks from all points are independent. Each walk is

sequential.

 Heavy-duty double precision arithmetic with non-constant number
of iterations

 Compute-bound algorithm

6. MANYCORE IMPLEMENTATIONS

 Our plan is to use the same code base (e.g. OpenCL) to explore

different architectures

 OpenCL used for multicore CPU, GPU, FPGA (SOpenCL)

 Fast exploration based on area, performance and power

requirements

 Good match for FPGA technology:

 MC algorithm massively parallel

 Independent multiple path traversal from multiple points

 Poor match for FPGA technology:

–Double precision (DP) Trigonometric, Log, Additions, Multiplications

functions for each walk

–DP arithmetic takes up a lot of area and is slow

•Use SOpenCL and Xilinx Vivado HLS (High Level Synthesis)

tools to automatically generate MC hardware accelerators

•Multiple accelerators with different performance vs. area

characteristics can be generated very fast

•Best approach is when one accelerator traverses all walks from as

many points as possible

•Target clock 250 MHz

 GPU speed-up is 35X

with respect to CPU

 FPGA speed-up is 1.7X

with respect to CPU

 VC707 can fit 7 MC

accelerators which

operate in parallel

 DP arithmetic creates

very large FPGA

circuits which are slow

(~15000 clock cycles

per walk).

 However, FPGAs

consume less power

than both GPU and

CPU (TDP: Thermal

Design Power)

 GPUs are more power

efficient, mainly due to

their high performance

8. CONCLUSIONS

 Massively parallel platforms such as GPUs and FPGA can offer

higher performance and power efficiency than conventional

multicore CPUs for Monte Carlo algorithms

 GPUs are higher performance but higher energy as well.

 CPU platforms can offload computationally expensive parts of the

code to GPUs/FPGAs

1. DELIVERABLE 3.2

 OpenCL (Open Computing Language) : A unified programming

model aims at letting a programmer write a portable program once

and deploy it on any heterogeneous system with CPUs and GPUs.

 Became an important industry standard after release due to

substantial industry support

 One host and one or more Compute Devices (CD)

 Each CD consists of one or more Compute Units (CU)

 Each CU is further divided into one or more Processing Elements (PE)

 Intel Core i7-4820K CPU clocked at 3.70GHz

 8 threads. Each thread performs a random walk

 GeForce GTX 680 GPU (Kepler architecture)

 Almost 2 Teraflops peak performance, 288 Watts power

dissipation

 N*768 threads (N is the number of points in the grid)

 Use polyhedral analysis to partition original computation in smaller

chunks for execution in heterogeneous systems

3. OPENCL PROGRAMMING MODEL

5. MONTE CARLO RANDOM WALKS

MULTICORE CPU and GPU IMPLEMENTATIONS

FPGA IMPLEMENTATIONS

Parameterizable Architecture in Number of Accelerators

Minimal I/O required : only initial point coordinates.

7. RESULTS

Boundaries

2. Silicon OPENCL

 OpenCL can be used as a CAD tool to generate hardware accelerators

 Fast hardware generation and architectural exploration using

SOpenCL

 Common representation : one OpenCL program, multiple target

platforms (CPU, GPU, FPGA)

FU FU FU

V Data

V Data

V Data

V Data

V Data

V Data

Terminate

Sin0 Sin1 Sin2 Sin3 Sout0

Data
Path

Named Register

Named Register

Memory Mapped Registers

Bus Bridge

Arbiter

Sin Align Unit Sout Align Unit

Sin Requests

Generator

Cache

Unit
Sout AGU

Sin AGU

Request

Status

Local request
Data_line

Sin
Addresses

Address Data_in

Data_out

Address

Address

Data_outAck_OAddressAck_AAck_IData_in

Sin0 Sin1 Sin2 Sin3 Sout0

Streaming
Unit

System Interconnect

Multiplexer Tree

Tunnel

Tunnel

 Generate

configurable

streaming

architectures using

OpenCL

 Discrete Data Path

and Stream I/O units

for separation of

concerns

 Instruction

clustering to reduce

interconnect

overhead

1,0

34,3

1,2

0,0 5,0 10,0 15,0 20,0 25,0 30,0 35,0 40,0

Multicore CPU

GPU (GeForce 680)

FPGA (Virtex-7, XC7VX485T)

Speed Up (Normalized to CPU)

130,0

195,0

15,0

0,0 50,0 100,0 150,0 200,0 250,0

Multicore CPU

GPU (GeForce 680)

FPGA (Virtex-7, XC7VX485T)

TDP Power (Watts)

1,0

22,9

10,4

0,0 5,0 10,0 15,0 20,0 25,0

Multicore CPU

GPU (GeForce 680)

FPGA (Virtex-7, XC7VX485T)

Power Efficiency (Watt/Performance)
(Normalized to CPU)

