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Abstract—Gliomas are primary brain tumors characterized by
rapid growth and aggressive diffusive behavior. Radiation therapy,
following extensive surgical resection, is included among the stan-
dard protocols for the treatment of this kind of malignant tumors.
Several mathematical models have been developed to approximate
the evolution of gliomas. In this paper we consider a linear reaction-
diffusion tumor growth problem in 1 + 1 dimensions that, except
from the heterogeneity of the brain tissue, takes into consideration
the effect of radiotherapy treatment. Extending recent results, our
main objective is, by utilizing the unified transform, to obtain an
integral representation of the solution that also incorporates the effect
of radiotherapy. Among several advantages of the unified transform
is the fact that one may recover the value of the solution at any point
(x, t) directly, without prior knowledge of the solution at any previous
time level other than the initial. Simple trapezoidal rule on appropriate
hyperbolic contours leads to efficient numerical evaluation of the
integral representation.

Keywords—Gliomas, Radiotherapy, Reaction-Diffusion PDEs,
Fokas Unified Transform, Numerical Integration.

I. INTRODUCTION

GLIOMAS, one of the most common and aggressive
forms of primary brain tumors, are well known for their

rapid growth and highly diffuse invasion of adjacent normal
tissue. To study the core properties of motile glioma cells,
namely migration and proliferation, mathematical models (cf.
e.g. [3], [5], [20], [23]; for a review see also [13], [11] and
[10]) considered reaction-diffusion PDEs and, based on CT-
scan data, calculated the values of the diffusion and prolifera-
tion parameters. Brain’s tissue heterogeneity (gray and white
matter) was incorporated later in the basic model by making
use of a properly discontinuous diffusion coefficient (cf. [18],
[19]).

Recently, in [15], [16] and [4], the model was further
extended to also incorporate the effects of radiotherapy as,
combined with surgery and chemotherapy, it is considered to
be a standard treatment regime.

The unified transform, a new method for solving linear and
integrable nonlinear PDEs, was introduced in [6]- [7], and
since then has been studied and further developed by many
researchers (see [8] for a review). The method is characterized
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by novel integral representations of the solution in the complex
k-plane which are uniformly convergent and, via contour
deformation, decay exponentially.

The implementation of the unified transform method for
brain tumor models with discontinuous diffusion coefficient
was introduced in [12] and further studied in [1] and [2].
Our main objective of the present work is to further extend
our results on the unified transform method to include also
heterogeneous brain tumor models that incorporate the effect
of radiotherapy. Our results refer on the 1+1 dimensions case
as the work for higher dimensions is still in progress.

II. METHODOLOGY

A. Mathematical model

Assuming exponential tumor growth and a simple log-kill
radiotherapy model, the core reaction-diffusion PDE of the
mathematical model, considered here, takes the form (cf. [19],
[16], [15]):

∂c̄

∂t̄
= ∇ · (D̄∇c̄) + ρ̄ c̄− R̄(t̄) c̄, (1)

where c̄(x̄, t̄) denotes the tumor cell density at location x̄ ∈ Rn
(n = 1, 2, 3) and time t̄ , ρ̄ stands for the net proliferation rate
( cf. [3]), D̄ is the diffusion coefficient representing the active
motility of malignant cells (cf. [20]) and R̄(t̄) describes the
effect of radiotherapy. The dimensions of the above variables
are: 

[x̄] = cm, [t̄] = day, [c̄] =
cells

cmn
,

[D̄] =
cm2

day
, [ρ̄] =

1

day
, [R̄] =

1

day

(2)

At the boundary we consider zero flux, which impose no
migration of cells beyond the brain boundaries, and an initial
condition c̄(x̄, 0) = f̄(x̄), where f̄(x̄) is the initial spatial
distribution of malignant cells.

Due to the heterogeneity of the brain tissue the diffusion
coefficient D̄ is defined by (cf. [18], [19]) :

D̄ ≡ D̄(x̄) =

 Dw, x̄ in white matter (x̄ ∈ Ω̄w)

Dg, x̄ in gray matter (x̄ ∈ Ω̄g)
, (3)

where Dw and Dg are scalars with Dw > Dg .
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Considering a low-dose-rate and fractionated radiotherapy,
activated in the time interval (T̄G, T̄R], the effect of radiothe-
rapy is described by (cf. [15]):

R̄ ≡ R̄(t̄) = ReffkR(t̄) , (4)

where kR(t̄) denotes the temporal profile of the radiation
schedule and, by using a time step of one day, takes the value
one on the radiotherapy days and zero otherwise, that is

kR(t̄) =


1, t̄ ∈ (T̄G, T̄R]

0, t̄ 6∈ (T̄G, T̄R]
. (5)

Reff denotes the effect of n fractions of radiation per day and
is described by (cf. [15] and the references therein)

Reff = α(nd) + 2βnd2

[
g(µτ) + 2

cosh(µτ)− 1

(µτ)2
hn(φ)

]
,

with

g(µτ) =
µτ − 1 + e−µτ

(µτ)2
and hn(φ) =

(n− 1− nφ+ φn)φ

n(1− φ)2

where α, β are sensitivity parameters, d is the dose rate at
time t̄, µ is the half time for repair of radiation-induced DNA
damage, τ is the irradiation duration and φ = e−µ(τ+∆τ)

with ∆τ denoting the time interval between fractions. We
point out that the values of the parameters used in all the
above relations may be found, for example, in [15] (see the
list of parameter values included in Table 1 of [15] and the
corresponding references therein).

Working towards the direction of describing the model
problem in (x̄, t̄) regions where c̄ may be considered analytic
inside and continuous on the boundary, let us first define c̄ on
three consecutive time regions t̄`, ` = 1, 2, 3 as follows:

c̄ (x̄, t̄1) = c̄ (x̄, t̄) , t̄ ∈ (0, T̄G]

c̄ (x̄, t̄2) = c̄
(
x̄, t̄− T̄G

)
, t̄ ∈ (T̄G, T̄R]

c̄ (x̄, t̄3) = c̄
(
x̄, t̄− T̄R

)
, t̄ ∈ (T̄R, T̄F ]

. (6)

Using, now, the above notation, the model problem in 1+1
dimensions is written as:

∂c̄

∂t̄`
=
(
D̄c̄x̄

)
x̄

+ ρ̄` c̄ , x̄ ∈ [ā, b̄] , 0 < t̄` ≤ T̄`

c̄ (x̄, 0) = c̄`(x̄)

c̄x̄ (ā, t̄`) = c̄x̄
(
b̄, t̄`

)
= 0

(7)

where
ρ̄1 = ρ̄ , T̄1 = T̄G , c̄1(x̄) = f̄(x̄)

ρ̄2 = ρ̄−Reff , T̄2 = T̄R − T̄G , c̄2(x̄) = c̄(x̄, T̄1)

ρ̄3 = ρ̄ , T̄3 = T̄F − T̄R , c̄3(x̄) = c̄(x̄, T̄2)

.

(8)

B. Dimensionless Variables and Equivalence Transformations

The dimensionless form of the IBVPs in (7) is given by
∂c

∂t`
= (D cx)x + ρ`c , x ∈ [a, b] , 0 < t` ≤ T`

c (x, 0) = c` (x)

cx (a, t`) = cx (b, t`) = 0

(9)

where (cf. [18], [2])

x = χx̄, a = χā, b = χb̄, t` = ρ̄t̄`,

c (x, t`) =
1

χN0
c̄ (χx̄, ρ̄t̄`)

c` (x) =
1

χN0
c̄` (χx̄)

D =
D̄

Dw
, ρ` =

ρ̄`
ρ̄

(10)

with

χ =

√
ρ̄

Dw

and N0 =

∫ b̄

ā

f̄ (x̄) dx̄, (11)

and, obviously, Tj = ρ̄T̄j . Also, observe that N0 denotes the
initial number of glioma cells in [ā, b̄].

Furthermore, upon immediate application of the correspond-
ing result in [2], we also have that:

Lemma 1. If c(x, t`), ` = 1, 2, 3 satisfies the IBVP in (9)-(11)
and u(x, t`) is defined by

u(x, t`) = e−ρ`t`c(x, t`), (12)

then u(x, t`), ` = 1, 2, 3 satisfies the IBVP
∂u

∂t`
= (D ux)x , x ∈ [a, b] , 0 < t` ≤ T`

u (x, 0) = u` (x) ≡ c` (x)

ux (a, t`) = ux (b, t`) = 0

. (13)

C. The Unified Transform

To proceed, now, with the application of the Unified Trans-
form for the solution of the IBVPs in (13), let us first fix
notation with brain’s heterogeneity regions of white Ωw and
gray Ωg matter inside the interval [a, b]. Namely, as in [2],
we shall consider [a, b] partitioned into n + 1 sub-intervals
Rj := (wj−1, wj), with a ≡ w0 < w1 < w2 < . . . < wn <
wn+1 ≡ b, and if Rj ⊆ Ωw, for some j, then Rj−1 ⊆ Ωg and
Rj+1 ⊆ Ωg . With this notation, the diffusion coefficient D,
defined in (10), takes the form

D(x) = γj =

 γ, when x ∈ Ωg

1, when x ∈ Ωw

, (14)

where γ = Dg/Dw. As, now, the parabolic nature of the pro-
blem directly implies continuity of both u and Dux across
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each interface point wj , for each j = 1, 2, . . . , n and ` =
1, 2, 3, there holds

lim
x→w+

j

u(x, t`) = lim
x→w−

j

u(x, t`)

lim
x→w+

j

D(x)ux(x, t`) = lim
x→w−

j

D(x)ux(x, t`)
. (15)

Let u(j)(x, t`) denote the solution of the problem defined
in Lemma 1 over the region [wj−1, wj ] × [0, T`]. Observing
that its analyticity and continuity properties in the interior and
on the boundaries on this region allow Green’s and Cauchy’s
theorems to be applied, immediate application of our analysis
in [2] implies:

Proposition 1. If u(j)(x, t`), for each j = 1, 2, . . . , n and
` = 1, 2, 3, denotes the solution of the IBVP defined in Lemma
1 over the region [wj−1, wj ]× [0, T`] and k ∈ C, then

u(j)(x, t`) =
cj
2π

∫ +∞

−∞
eicjkx−k

2t` û
(j)
` (cjk)dk

− 1

2πcj

∫
∂Γ+

eicjk(x−wj−1)−k2t`

· [ũ(j)
x (wj−1, k

2) + icjkũ
(j)(wj−1, k

2)]dk

− 1

2πcj

∫
∂Γ−

eicjk(x−wj)−k2t`

· [ũ(j)
x (wj , k

2) + icjkũ
(j)(wj , k

2)]dk ,

(16)

where

• cj = 1/
√
γj

• Γ+ and Γ− denote the contours (see also Fig. 1)

Γ+ = {k ∈ C : arg(k) ∈ (
π

4
,

3π

4
)},

Γ− = {k ∈ C : arg(k) ∈ (
5π

4
,

7π

4
)},

• u
(j)
` (x) are the initial data, defined in Lemma 1, re-

strained over region [wj−1, wj ], and û(j)
` (x) denotes its

Fourier transform, defined by

û
(j)
` (k) =

∫ wj

wj−1

e−ikxu
(j)
` (x)dx . (17)

The quantities ũ(j) and ũ
(j)
x are given by the solution of the

(2n+ 2)× (2n+ 2) complex linear system

GU = F, (18)

where the nonzero elements of the matrix G = {Gp,q} are
defined by:
• for j = 1: G1,1 G1,2 G1,3

G2,1 G2,2 G2,3

 =

 A
(1)
1 A

(1)
3 A

(1)
4

A
(1)
5 A

(1)
7 A

(1)
8

 (19)

• for j = 2, 3, . . . , n: G2j−1,2j−2 G2j−1,2j−1 G2j−1,2j G2j−1,2j+1

G2j,2j−2 G2j,2j−1 G2j,2j G2j,2j+1

 =

=

 A
(j)
1 A

(j)
2 A

(j)
3 A

(j)
4

A
(j)
5 A

(j)
6 A

(j)
7 A

(j)
8


(20)

• for j = n+ 1: G2n+1,2n G2n+1,2n+1 G2n+1,2n+2

G2n+2,2n G2n+2,2n+1 G2n+2,2n+2

 =

=

 A
(n+1)
1 A

(n+1)
2 A

(n+1)
3

A
(n+1)
5 A

(n+1)
6 A

(n+1)
7


(21)

with

m A
(j)
m A

(j)
m+1

1 icjγjke
−icjkwj−1 γj−1e

−icjkwj−1

3 −icjγjke−icjkwj −γje−icjkwj

5 −icjγjkeicjkwj−1 γj−1e
icjkwj−1

7 icjγjke
icjkwj −γjeicjkwj

and

U =



ũ(1)(a, k2)

ũ(1)(w1, k
2)

ũ
(1)
x (w1, k

2)

...

ũ(n)(wn, k
2)

ũ
(n)
x (wn, k

2)

ũ(n+1)(b, k2)



, F =



f̂ (1)(c1k)

f̂ (1)(−c1k)

...

f̂ (n+1)(cn+1k)

f̂ (n+1)(−cn+1k)


.

D. Numerical Integration Contours and Integral Properties

It is known (cf. [21], [22]; see also [9], [14], [2]) that for the
efficient numerical evaluation of the above integrals in (16) one
may apply the trapezoid rule on suitable hyperbolic contours.
For this, we deform (cf. e.g. [2]) the integration paths ∂Γ± to
hyperbolas of the complex plane by the mapping:

kθ ≡ k(θ) := i sin(β − iθ), (22)

where the angle β is chosen to be β = π/6 and the curves
±k(θ) are shown schematically in Fig. 1 that follows.
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Fig. 1: The contours ±k(θ) for numerical integration

The above mapping leads us in rewriting the solution (16) as

u
(j)
` (x, t`) =

cj
2π

∫ +∞

−∞
eicjkx−k

2t` û
(j)
` (cjk)dk

− 1

2πcj

∫ +∞

−∞
eicjkθ(x−wj−1)−k2θt`

· [ũ(j)
x (wj−1, k

2
θ) + icjkθũ

(j)(wj−1, k
2
θ)]k′θdkθ

− 1

2πcj

∫ +∞

−∞
e−icjkθ(x−wj)−k2θt`

· [ũ(j)
x (wj , k

2
θ)− icjkθũ(j)(wj , k

2
θ)]k′θdkθ ,

(23)

where k′θ denotes the derivative of k(θ).
For the efficient implementation of the numerical quadrature

rules - in particular for the evaluation of the last two integrals
- one has to take into consideration (cf. [2] for example) basic
algebraic properties such as:
• The real parts of the integrands are even functions of θ.
• The imaginary parts of the integrands are odd functions

of θ.
• The integrands are decaying functions of θ.
Application of the above properties directly implies that

∞∫
−∞

U(θ)dθ = 2

∞∫
0

Re (U(θ)) dθ ≈ 2

Θ∫
0

Re (U(θ)) dθ ,

where U(θ) denotes any one of the last two integrands
involved in (23) and Θ is a relatively small real number. For a
good estimate of Θ one may require the dominant exponential
term e−k

2
θτ , common in all integrals, to satisfy∣∣∣e−k2θτ ∣∣∣ ≤ 10−M for all θ ≥ Θ ≡ Θ(τ ;M)

for sufficiently large M , hence (cf. [12])

Θ =
1

2
ln

4τ + 8M ln 10

τ
. (24)

III. NUMERICAL EXPERIMENTS

Two different numerical experiments are included in this
section to visually demonstrate the behavior of their semi-
analytical solution by an effective combination of the unified
transform and numerical quadrature rules on hyperbolic con-
tours. We would like to clarify that said model problems are
virtual cases and have no relevance with real patient data.

The per day radiotherapy protocol, followed in both models,
is identical. Namely, we assumed that the administered per
day radiation dose is d = 1.8Gy and, by using the parameter
values (cf. [15]) α = 0.027, β = 0.0027, n = 1, µ =
11.4, τ = 0.0083, ∆τ = 1, the radiation coefficient in both
models satisfies Reff = 0.05707849.

A. Model Problem I

Referring to the model problem in (7), consider the values:

ā = −10 cm, b̄ = 10 cm, w̄1 = −5 cm, w̄2 = 5 cm

Ω̄g = [ā, w̄1) ∪ (w̄2, b̄] and Ω̄w = [w̄1, w̄2]

Dg = 0.0013 cm2day−1, Dw = 0.0065 cm2day−1

ρ̄ = 0.012 day−1, N0 = 100 cells
(25)

The initial distribution of cells is considered to be

f̄(x̄) = N0δ(x̄),

where δ(x̄) denotes Dirac’s delta.
We considered a radiotherapy period of 35 days, started on

T̄G = 180 day and finished on T̄R = 215 day, during which
the total administered radiation dose is 63Gy.

The results from applying a simple trapezoidal rule, using
50 quadrature points, for the evaluation of each one of the
integrals in relation (23) are depicted in Fig. 2 and Fig. 3.

Fig. 2: Time evolution of the cell density c̄(x̄, t̄) for one glioma
cell source. Radiotherapy period of 35 days (from 180 to 215).
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More specifically, in Fig. 2, the evolution of the cell density
function c̄(x̄, t̄) is depicted for a total period of T̄F = 365
days. By inspection, one may easily recognize the time periods
the tumor grows without treatment, hence diffusion and pro-
liferation dominate, as well as the time period of radiotherapy.

The radiotherapy effect on the total number of tumor cells
N(t̄), defined by

N(t̄) =

∫ b̄

ā

c̄(x̄, t̄)dx̄ ,

is depicted in Fig. 3. The differential between treated and
untreated tumor growth reveals that the administered radio-
therapy extended survival by 166 days.

Fig. 3: The effect of radiotherapy on the total number of tumor
cells.

B. Model Problem II

In this problem we consider four initial point sources of
malignant cells. Referring, again, to the model problem in (7),
we consider the values:

ā = −10 cm, b̄ = 10 cm

w̄1 = −6 cm, w̄2 = −5 cm, w̄3 = 1 cm, w̄4 = 7 cm

Ω̄g = [ā, w̄1) ∪ (w̄2, w̄3) ∪ (w̄4, b̄]

Ω̄w = [w̄1, w̄2] ∪ [w̄3, w̄4]

Dg = 0.0013 cm2day−1, Dw = 0.0065 cm2day−1

ρ̄ = 0.012 day−1, N0 = 400 cells
(26)

and the initial distribution of tumor cells is given by

f̄(x̄) =
N0

4
[δ(x̄+ 8) + δ(x̄+ 3) + δ(x̄− 4) + δ(x̄− 6)] .

We implemented a radiotherapy period of 40 days, started
on T̄G = 180 day and finished on T̄R = 220 day, during which
the total administered radiation dose is 72Gy.

The results from applying a trapezoidal rule, using 50
quadrature points, for the evaluation of each one of the
integrals in relation (23) are depicted in Fig. 4 and Fig. 5.

As in model problem I, Fig. 4 depicts the evolution of the
cell density function c̄(x̄, t̄) for a total period of T̄F = 365
days. Again, the time periods the tumor grows without treat-
ment as well as the time period of radiotherapy are easily
recognizable.

Fig. 4: Time evolution of the cell density c̄(x̄, t̄) for four
glioma cell sources. Radiotherapy period of 40 days (from
180 to 220).

The radiotherapy effect on the total number of tumor cells
N(t̄) is depicted in Fig. 5. The differential between treated
and untreated tumor growth reveals that the administered
radiotherapy extended survival by 190 days.

Fig. 5: The effect of radiotherapy on the total number of tumor
cells.

IV. CONCLUSIONS

In the present work, extending recently produced results (cf.
[12], [1], [2]), we used the Unified Transform, as well as the
trapezoidal rule on hyperbolic contours, to derive and evaluate
novel integral representations of a linear reaction-diffusion
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problem’s solution that models the growth of aggressive brain
tumors, in a heterogeneous environment, and incorporates the
effect of radiotherapy. The results, although limited to the 1+1
dimension case, reveal the potential of the method to describe
exactly the solution at any space-time point without depending
on any other data apart from the initial data of all stages. And
this, not only for domains that solutions remain smooth, but
for multi-domain environments that include discontinuities of
the solution’s partial derivatives not only in space but in time
as well, as we showed here. In this way we clearly enlight the
path to effectively solve more general models that incorporate
surgical resection and chemotherapy as well, and, of course,
contribute to the solution of the problem in 2+1 dimensions.
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