
On PDE problem solving environments
for multidomain multiphysics problems

Christos Antonopoulos, Manolis Maroudas, and Manolis Vavalis

University of Thessaly, Department of Electrical and Computer Engineering,
Gklavani 37, 38221 Volos, Greece
{cda,emmmarou,mav}@uth.gr

Abstract. This paper presents the design, the prototype implementa-
tion and the preliminary evaluation of an enhanced meta-computing en-
vironment based on the FEniCS Project and focused on multi-domain
multi-physics problems modeled with partial differential equations. It
is based on scripting languages and their practices, and on the Service
Oriented Architecture paradigm and the associated web services tech-
nologies. Our design is generic, covering a wide range of problems but
our proof of concept implementation is restricted to elliptic PDEs in two
or three dimensions.

Keywords: problem solving environments, numerical solution of PDEs,
scientific high performance meta-computing, numerical software

1 Introduction

Advances in hardware and software technologies in the 1980s led to the modern
era of scientific modeling and simulation. This era seems to come to an end. The
simulation needs in both industry and academia mismatch with the existing soft-
ware platforms and practices, which to a great extent have remained unchanged
for the past several decades. We foresee that this mismatch, together with the
emerging ICT advances and the cultural changes in scientific approaches will
lead to a new generation of modeling and simulation.

This paper proposes approaches for designing, analyzing, implementing and
evaluating new simulation frameworks particularly suited to multi-domain and
multi-physics (MDMP) problems that have Partial Differential Equations (PDEs)
in their foundations. These types of problems appear frequently on real world
problems. Considering also their heavy computational needs it seems reasonable
to make them more accessible to the programmer while reducing their execution
time using every available device/machine on a system/network.

We focus on designing a software platform that facilitates the numerical
solution of PDEs associated with MDMP mathematical models. In particular,
we propose an enhanced meta-computing environment which is based on: (a)
scripting languages (Python) and their practices and (b) on the Service Oriented
Architecture (SOA) paradigm and the associated web services technologies.

http://dx.doi.org/10.6084/m9.figshare.1495353

2 Maroudas, Antonopoulos, Vavalis

Although our design is generic, covering a wide range of problems, our proof
of concept implementation is restricted to elliptic PDEs in two or three dimen-
sions. Furthermore, we show that that our approach can easily exploit state of the
art meta-computing methodologies (Schwartz splitting, hybrid stochastic deter-
ministic methods, ...), numerical solvers (finite element modules from deal.II, in-
terpolants, ...) and modern computer architectures. Specifically, it clearly shows
that our tool can easily exploit state of the art numerical solvers including those
available in FEniCS [6] and deal.II [2], domain decomposition methods with or
without overlapping [5] [12] Monte Carlo based hybrid solvers [10], rectangular
or curvilinear domains and interfaces and beyond.

2 Meta-computing algorithms for MDMP problems

Traditional linear PDE solvers follow a simple workflow. We first discretize the
problem (domain and derivatives), and then solve the resulting linear algebraic
problem. Unfortunately, this approach is not best suited for MDMP problems
since it leads to monolithic PDE solvers that treat the MDMP problem as a
coherent all that does not exploit the “multi” nature of the problem. For such
problems, these solvers are expensive to develop, difficult to maintain and reuse.
Their mapping to multi-processing machines is rather challenging.

Meta computing algorithms provide an attractive alternative. They allow us
to exploit the problem characteristics and view its solution process as a workflow
that involves individual, relatively simpler PDE solvers that are associated with
the multi nature of the problem and can be fine tuned and easily mapped through
high level parallelism.

2.1 Hybrid, deterministic-stochastic methods

The Monte Carlo method has the capability to provide approximate solutions to
a variety of mathematical problems, not necessarily with probabilistic content
or structure, by performing statistical sampling experiments. About a century
has been passed since the discovery of methods which based on the Monte Carlo
concept provide numerical approximations to PDE problems. These methods
generate random numbers and by observing certain of their characteristics and
behavior are capable of calculating approximations to PDE solutions.

It has been proposed (see [10] and references within) that the above stochastic
solver can be combined with traditional PDE solvers to develop a hybrid solver
that enjoy several very desirable characteristics in many respects.

Given the overall domain Ω with boundary ϑΩ, the associated PDE and a
particular domain of interest D ⊂ Ω with boundary Γ = ϑD\ϑΩ, the main
steps of a hybrid stochastic/deterministic solver are:

Stochastic pre-processing: Monte Carlo-based walks on spheres inside Ω to
compute an approximation of the solution at selected points on D.

PDE problem solving environments for MDMP problems 3

Interpolation: Interpolation procedures which using the computed in the pre-
vious step solutions on particular points on D constructs the interpolant of
the solution on D which acts as a boundary conditions for the local PDE
sub-problems.

Deterministic solving: Solves each one of the independent local PDE sub-
problems generated by the above decoupling of the original PDE problem.
Selected a local conventional solver for each resulting sub-problems that is
of our interest and compute the solution.

Our prototype implementation concentrates on the Poisson equation, nar-
rowed on the unit square or unit cube for 2D and 3D problems respectively.
It utilizes high, quality state of the art software components that include finite
solvers from the deal.II [2] library for the deterministic solving step, 2D and 3D
interpolants, plot and visualization modules etc..

2.2 Domain Decomposition Methods

The classical Schwarz alternating procedure demonstrates the basic mathemat-
ical idea of overlapping domain decomposition methods. These methods [5], are
efficient, flexible and best suited for MDMP problems. Several of these methods
are inherently suitable for parallel computing the solution of PDEs. They all
offer a reasonable alternative since they are based on a physical decomposition
of a global MDMP problem. The global solution is then sought by solving the
smaller subdomain problems collaboratively and then combining their individual
solutions.

Let us consider an example consisting of the domain Ω = Ω1 ∪Ω2 with per-
haps different elliptic operators on each subdomain. Γi is the internal boundary
of subdomain Ωi, i = 1, 2.

Schwarz methods are realized through the following iterative procedure for
finding the approximate solution in the entire composite domain Ω. Let uni
denote the approximate solution in subdomain Ωi, and fi denote the restriction
of f to Ωi. Starting with an initial guess u0, we iterate for n = 1, 2, . . . to
find successive approximate solutions uk, k = 1, 2, Assuming, without loss
of generality in our approach, that the original MDMP problem consists of the
Poison equation in Ω with homogeneous Dirichlet conditions on Ω we iterate
between the two sub-problems as follows:

−∇2un1 = f1 in Ω1

un1 = g on ϑΩ1\Γ1,

un1 = un−1
2 | Γ1 on Γ1

−∇2un2 = f2 in Ω2

un2 = g on ϑΩ2\Γ2,

un2 = un1 |Γ2 on Γ2.

(1)

Within each iteration, the two problems continuously update the internal
Dirichlet conditions on Γ1 and Γ2. Note that the classical alternating Schwartz
methods usually have limited parallelism. There exist variants of these methods
(eg additive Schwarz methods) that inherently promote parallel computing and

4 Maroudas, Antonopoulos, Vavalis

although their rate of convergence is lower, the associated iteration scheme is
inherently parallel.

Interface relaxation methods [12] are essentially non-overlapping domain de-
composition methods that follow the iterative structure of the Schwartz method
but in a more complicate manner. Besides that, in our meta-computing im-
plementation framework these methods can be treated in a completely similar
manner that due to space limitation will not be presented here.

3 FEniCS Extensions for MDMP PDE Problems

The FEniCS project [6] is an open-source collection and integration of software
tools specialized on automated, high quality and high performance solution of
differential equations.

The main user interface of FEniCS is Dolfin [7], a C++ and Python library.
It provides a problem solving environment for models based on PDEs. It im-
plements core parts of the functionality of FEniCS, including data structures
and algorithms for computational meshes and finite element assembly. It also
wraps the functionality of other FEniCS components and external software, and
is responsible for the correct communication between them.

FEniCS targets user-friendly notation and support for rapid development. It
supports weak formulations for the representation of PDEs through the Unified
Form Language (UFL) [1]. UFL is integrated with Dolphin and defines a flexible
user interface for defining finite element spaces and expressions for weak forms in
a notation close to mathematical notation. It can handle complicated equations
efficiently. Differentiation of expressions and forms are also integrated in the
language.

The main goal of our extensions is to design and implement an open, en-
hanced meta-computing environment supporting MDMP problems, without chang-
ing the back-end of FEniCS (problem assembly, linear algebra solvers etc.). Our
platform utilizes and extends the Python user interface of Dolfin, as Python syn-
tax is closer to UFL, being at the same time fitter for rapid prototyping. Sup-
port for multi-domain multi-physics (MDMP) problems is implemented on top
of the existing functionality, either as new Python modules using the available
data structures and classes, or as external dynamically shared C++ libraries,
wrapped as Python modules using SWIG [3].

3.1 Extensions for MDMP PDE Problems with Overlapping
Domains

We implement the additive Schwarz method and use it as a high level solver
for MDMP problems with overlapping domains. The geometry, interfaces, dis-
cretization, boundary values and equations applicable on each subdomain are
described using UFL and Dolphin in a separate file per subdomain. This orga-
nization treats different subdomains as distinct programming units, facilitating
the parallel or distributed solution of the problem on different subdomains. This

PDE problem solving environments for MDMP problems 5

is particularly helpful in case web services are used, as discussed in Section 4.
All datatypes used are either pure Python or FEniCS objects. There is no de-
pendence from third party software libraries at this level.

Each subdomain object must override a number of methods implicitly called
before each invocation of the solver.

init() This method holds the UFL [1] definition of the subdomain and sets as
class attributes the subdomain’s function space, linear and bi-linear form of
the PDE.

neighbors() It provides information to the solver about the other subdomains
this subdomain overlaps with, in order for the solver to automatically update
the interface values after each iteration.

boundaries() It informs the solver about the fixed external boundaries of the
subdomain.

The entry point of the iterative solver is the solve() method. It takes as
arguments an object with the configuration of the solving environment (max
iterations, tolerance, etc) and a Python list of user defined problem objects.

After each iteration, for each subdomain solution, the algorithm checks a set
of termination criteria evaluating convergence or whether a maximum number
of iterations has been reached.

(a) Subdomains topology (b) Convergence rate for
the two subproblems

(c) Solution for the sphere
subdomain

(d) Solution for the box
subdomain

Fig. 1. A sample 3D problem with two overlapping subdomains

6 Maroudas, Antonopoulos, Vavalis

As an example, assume a 3D problem with two subdomains: a sphere and a
box that overlap as shown in figure 1(a). Figures 1(c) and 1(d) depict the solution
using the iterative Schwarz solver, whereas figure 1(b) depicts the convergence
rate for the two subdomains until reaching the user-specified accuracy.

Listing 1.1 outlines the definition of the box subdomain (box3D 1.py) on top
of a common skeleton file. The definition of the sphere subdomain (sphere3D 1.py)
is similar. Listing 1.2 shows the code that, given the subdomain definitions, drives
the iterative solver. The user-required changes on the skeleton and driver are in
bold. The subdomains can be – and are in the example – configured with different
meshes, discretizations and PDEs. Note also that using a remote solver would
be completely straightforward, by substituting line 7 with the commented-out
lines 5-6.

Listing 1.1. Box subdomain definition based on a common skeleton.
1 # user de f ined methods
2 def OveralappingWithOther(): pass
3 def userDefinedUFL(): pass
4 def userDefinedBoundaryCondition(): pass
5
6 # ske l e t on example
7 def ExtBC(x , on boundary) :
8 return on boundary and not OveralappingWithOther ()
9

10 def Ext I face (x , on boundary) :
11 return on boundary and OveralappingWithOther ()
12
13 c l a s s Problem (ConfigCommonProblem) :
14 # Override the API methods i n i t () , ne ighbors () and boundar ies ()
15
16 def i n i t (s e l f ,∗ args ,∗∗ kwargs) :
17 s e l f . domain name = ’box’
18 mesh = Mesh(Box(-2,-1,-.5,2,1,.5),128)
19 s e l f .V = FunctionSpace(mesh,’Lagrange’,1)
20 s e l f . a , s e l f . L = userDefinedUFL(V)
21
22 # return a d i c t i ona ry with i n t e r f a c e s f o r each neighbor
23 def ne ighbors (s e l f) :
24 interface = {}
25 interface[self.domain name] = ExtIface
26 return interface
27
28 # return a l i s t with a l l the ex t e rna l boundar ies
29 def boundaries (s e l f) :
30 bc = DirichletBC(self.V, userDefinedBoundaryCondition(), ExtBC)
31 return [bc]

Listing 1.2. Code solving a 3D problem with two overlapping subdomains.
1 from do l f i n import ∗
2 import s o l v e r c o n f i g
3 import s o l v e r
4
5 # c l i e n t = hmc . RemoteClient (wsd l u r l)
6 # c l i e n t . s e t op t i o n s (timeout=t imeout in s econds)
7 c l i e n t = hmc . Loca lC l i ent ()
8
9 import sphere3D 1 as sphere

10 import box3D 1 as box
11
12 sp = sphere.Problem(client=client)
13 bp = box.Problem(client=client)
14 subdomains=[sp, bp]
15
16 config = solverconfig.Config3D()
17 s o l v e r . s o l v e (subdomains=subdomains , c on f i g=con f i g)

3.2 Hybrid, Deterministic-Stochastic Method Extensions

We introduce extensions to FEniCS to support hybrid deterministic-stochastic
methods. More specifically, a stochastic step is used to evaluate values at inter-
faces, whereas default FEniCS support can be used for interpolation and solving.

PDE problem solving environments for MDMP problems 7

This design decouples the stochastic interface estimation from the actual solving
and allows it to be implemented on any device (including CPUs, GPUs or even
FPGAs) in order to take advantage of the vast parallelism inherently available in
Monte-Carlo methods. Our implementation includes a POSIX threads version
for CPUs, as well as an OpenCL [11] version for any OpenCL-capable device
(including CPUs and GPUs).

The functionality is available in Dolphin in the form of an MC class, offering
the MC::montecarlo() method. The latter takes a description of the interface as
input and outputs estimations for the values on the interface. Both 2D and 3D
problems are supported.

The montecarlo() method takes the same arguments with the DirichletBC
class of FEniCS, plus a description of the original domain and the subdomain of
interest. Using the DirichletBC methods we obtain the points on the interface
and call the new montecarlo() method for them. The call returns the estimated
values of all interface points (nodes) assigned to a new DirichletBC object. The
latter can then be used anywhere in the rest of the program.

Listing 1.3 outlines and example of using the stochastic support introduced
in FEniCS to solve a PDE in an internal, rectangular subdomain of the original
domain, by stochastically estimating the values at the interface of the internal
subdomain. Once again, changes introduced by our extensions are highlighted
in bold.

Listing 1.3. Example of montecarlo() method in user code.
1 from do l f i n import ∗
2 import hybridmc as hmc # the platform ’ s Python module
3
4 def onbc (x , on boundary) :
5 return on boundary
6
7 def mc test 2D (Omega , Subdomain) :
8 x , y = va r i ab l e (Express ion (”x [0] ”)) , v a r i ab l e (Express ion (”x [1] ”))
9 expr = (x)∗(x−1)∗(y)∗(y−1)

10
11 mesh = Mesh(SubDomain ,128)
12 V = FunctionSpace (mesh , ’ Lagrange ’ , 1)
13
14 u , v = Tria lFunct ion (V) , TestFunction (V)
15 f = −Laplac ian (expr , x , y)
16 a = inner (grad (u) , grad (v))∗dx
17 L = f ∗v∗dx
18
19 # get exp r e s s i on s as s t r i n g s
20 f expr , q expr = hmc . t o o l s . cppcode (expr , x , y) , hmc . t o o l s . cppcode (f , x , y)
21 mcbc, est = client.montecarlo(V, onbc, OpenCL=True, Omega=Omega,
22 f=f expr, q=q expr)
23 sol mc = Function (V)
24 so l v e (a==L , sol mc , [mcbc])
25
26 i f name == ’ main ’ :
27 Omega2D = [1 . , 1 .]
28 SubDomain2D = Rectangle(.4, .8, .4, .8)
29 client = hmc.LocalClient()
30 mc test 2D (Omega2D , Subdomain2D)

The client object at line 29 above encapsulates the local/remote functionality
of the method. We discuss more about web services and client objects in chapter
4.

Figure 2 depicts the solution provided by the hybrid stochastic/determinis-
tic Monte Carlo-based solver for the sample problem of listing 1.3, as well as
the absolute error with respect to a fully deterministic solver for a set of 16
experiments.

8 Maroudas, Antonopoulos, Vavalis

(a) Solution of a Monte Carlo-based
solver

(b) Solution error w.r.t. a fully de-
terministic solver. Different lines
correspond to different mesh resolu-
tions

Fig. 2. Hybrid solution and error estimation with respect to a deterministic solver for
the sample problem

4 Web Services Layer

The scientific community has embraced the Web, enabling researchers as well as
practitioners to closely collaborate and share resources. This resulted primarily
in the publication of information while the availability of computational services
has been rather limited and to a great extend monolithic, mostly in the form
of e-science platforms that are expensive to build and difficult to reuse outside
their scope and environment.

We envision a radically new way of deploying, publishing, sharing, discovering
and re-using Scientific Computing resources in every day practice. For that we
argue the necessity of an open, balanced and ever-evolving ecosystem of web
services that:

– relieves consumers from the pain of selecting/installing/running the most ap-
propriate algorithm/software/machine components for their scientific com-
puting needs.

– allows producers to offer their scientific computing components in an easy
to be discovered/packaged/consumed way.

– enables computing facilities to accommodate a wide range of consumers and
producers in an open, dynamic, and value adding manner.

– advances the science of scientific computing towards problem solving with
the optimum available algorithm/implementation/machine combination

In our study we explore the idea of having the ability to develop, offer and
consume MDMP related computational modules in a transparent and abstract
way within our above described platform and through the Web. For this we
enhance our platform with a web service layer utilizing the following XML based
standards. For detailed information about Web services in general and the above
standards in particular please see [9].

SOAP: (Simple Object Access Protocol) for exchanging structured information
within web services in computer networks. It relies on other application layer
protocols, such as HTTP for message negotiation and transmission.

PDE problem solving environments for MDMP problems 9

WSDL: (Web Services Description Language) used for describing the function-
ality a web service offers, how it can be called, what parameters it expects,
and what data structures it returns.

ebXML: (e-business XML) that allows web service providers to publish their
services and consumers to query for service availability and description.

The overall scenario for developing a MDMP solver under the SOA paradigm
is the following. We first wrap up any of the software modules mentioned above
(or any other related legacy code) as a web service and publish it on our ebXML
directory utilizing any of the available IDEs or platforms. This may be accom-
plished through one of the several available Integrated Developing Environments
(IDE) or platforms. In particular we have implemented the above task in several
different ways, using WSO2, .Net, Eclipse, or Spyne (see details given below) in
a systematic manner that makes wrapping and deployment a more or less rou-
tine procedure with no particular challenges. Next, any developer or even any
software agent could query to ebXML for particular services, receive the list of
available ones, select the most appropriate and bind to it automatically through
its WSDL file even at run-time.

For a particular wrapper’s implementations we have selected Spyne [8] one
out of the many existing Python frameworks and briefly describe our main steps
below. Listing 1.4 shows a simple server function definition that wraps the Monte
Carlo method. The deployment of the server code in listing 1.4 can be done
as shown in listing 1.7. The RemoteClient class (see below) utilizes Suds [4], a
lightweight SOAP-based web service client for Python which reads WSDL files at
runtime. Upon creation, it parses the WSDL and derives from it a representation
which is used to provide the user with a service description for message/reply
processing.

In order to have a consistent API between local and remote methods, apart
from the RemoteClient class, the platform also defines a LocalClient class, as
shown below, with the same API methods. In the case of the RemoteClient, the
input data are sent to the remote server which in turn responds with the output
data. Listing 1.5 shows the base definition of the RemoteClient and LocalClient
classes. Any underlying implementation differences are transparent to the user
who in both cases receives the result the conventional local function call way, as
shown in listing 1.6.

5 Conclusion

We design a meta-computing platform to target MDMP problems, modeled with
PDEs, based on (but not limited to) the FEniCS project. The platform’s envi-
ronment provides a high level scripting API in Python, that utilizes the FEniCS
UFL domain specific language.

Our environment allows domain experts to focus on expressing the models
than delving into implementation details, programmers to effectively select the
most appropriate available software module for a particular component (subdo-
main) of the problem with respect to its associated single physics model and

10 Maroudas, Antonopoulos, Vavalis

users to efficiently deploy and run MDMP computations on loosely coupled dis-
tributed and heterogeneous compute engines.

We also show how to integrate remote functionality from machines over the
web in a consistent and transparent way to the end user, following widely ac-
cepted standards. Our generic design allows us to exploit state of the art software
libraries and explore new solving approaches for MDMP problems. It essentially
allow us to replace our traditional software library based viewpoint with and the
SOA based one that aggressively promote meta-computing and software reuse
at large.

6 Acknowledgment

This research has been co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program ”Ed-
ucation and Lifelong Learning” of the National Strategic Reference Framework
(NSRF) Research Funding Program: THALES. Investing in knowledge society
through the European Social Fund.

References

1. M. Alnæs. UFL: a Finite Element Form Language, chapter 17. Springer, 2012.

2. W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose object
oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1–24/27, 2007.

3. D. Beazley. SWIG: An Easy to Use Tool for Integrating Scripting Languages with
C and C++. In Proceedings of the 4th Conference on USENIX Tcl/Tk Workshop,
1996 - Volume 4, TCLTK’96, pages 15–15, Berkeley, CA, USA, 1996.

4. Fedorahosted.org. Suds is a lightweight soap python client for consuming web
services., 2014. [Online; accessed 23-October-2014].

5. M. J. Gander. Schwarz methods over the course of time. Electronic Transactions
on Numerical Analysis, pages 228–255, 2008.

6. A. Logg, K. Mardal, G. Wells, et al. Automated Solution of Differential Equations
by the Finite Element Method. Springer, 2012.

7. A. Logg and G. Wells. DOLFIN: Automated Finite Element Computing. ACM
Transactions on Mathematical Software, 37(2), 2010.

8. Arskom Ltd. spyne - rpc that doesn’t break your back., 2014. [Online; accessed
23-October-2014].

9. N. Papazoglou. Web Services: Principles and Technology. Pearson Prentice Hall,
2008.

10. G. Sarailidis and M. Vavalis. Implementing hybrid PDE solvers, 2013.
http://dx.doi.org/10.6084/m9.figshare.1134520.

11. J. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming standard for
heterogeneous computing systems. IEEE Des. Test, 12(3):66–73, May 2010.

12. P. Tsompanopoulou and E. Vavalis. An experimental study of interface relax-
ation methods for composite elliptic differential equations. Applied Mathematical
Modelling, 32(8):1620 – 1641, 2008.

PDE problem solving environments for MDMP problems 11

Appendix

Listing 1.4. A simple server function definition.
1 from spyne import Appl icat ion , rpc , ServiceBase , Integer , Double , Array
2 from spyne . p ro toco l . soap import Soap11
3 import hybridmc as core
4 import numpy as np
5
6 c l a s s MDMPService (Serv iceBase) :
7 ””” 1 . convert the input Python l i s t s to numpy arrays
8 2 . c a l l the core method and return output as Python l i s t ”””
9 @rpc (Array (Double) , Integer , Array (Double) , Integer , Str ing , Str ing , Boolean ,

10 r e tu rn s=Array (Double))
11 def montecarlo (ctx , dims , dim , coords , nof nodes , f , q ,OpenCL) :
12 D = np . array (dims , dtype=np . f l o a t)
13 node coord = np . array (coords , dtype=np . f l o a t)
14 i f not OpenCL :
15 f = Express ion (f)
16 q = Express ion (q)
17 return core . montecarlo (D, dim , node coord , nof nodes , f , q)

Listing 1.5. Base definition of RemoteClient and LocalClient.
1 from suds . c l i e n t import Cl i ent
2
3 c l a s s RemoteClient (C l i ent) :
4 de f i n i t (s e l f ,∗ args ,∗∗ kwargs) :
5 s e l f . i s l o c a l = False
6 Cl i ent . i n i t (s e l f ,∗ args ,∗∗ kwargs)
7
8 c l a s s Loca lC l i ent () :
9 de f i n i t (s e l f ,∗ args ,∗∗ kwargs) :

10 s e l f . i s l o c a l = True

Listing 1.6. Create client objects from user-code.
1 from do l f i n import ∗
2 import hybridmc as hmc
3
4 i f u s e r emo t e c l i e n t :
5 c l i e n t = hmc . RemoteClient (wsd l u r l)
6 c l i e n t . s e t op t i o n s (timeout=90) # . . .
7 e l s e :
8 c l i e n t = hmc . Loca lC l i ent ()

Listing 1.7. Server deployment.
1 from spyne import Appl i cat ion
2 from spyne . s e rv e r . wsgi import WsgiApplication
3 from wsg i r e f . s imp l e s e r v e r import make server
4 from mdmp service import MDMPService
5 import l ogg ing
6
7 app = Appl i cat ion ([MDMPService] , ’ spyne . examples . h e l l o . soap ’ ,
8 i n p r o t o c o l=Soap11 (va l i d a t o r =’ lxml ’) , ou t p ro to co l=Soap11 ())
9 wsgi app = WsgiApplication (app)

10 # logg ing code ommited
11 s e rv e r = make server (’ 1 2 7 . 0 . 0 . 1 ’ , 8000 , wsgi app) . s e r v e f o r e v e r ()

