
Contents lists available at AMCL’s Digital Library

NumAn2014 Conference Proceedings
Digital Library Triton : http://lib.amcl.tuc.gr

Exploring the Performance of Out-of-Core Linear
Algebra Algorithms in Flash based Storage

Athanasios Fevgas, Panagiota Tsompanopoulou, and Panayiotis Bozanis

Department of Electrical and Computer Engineering
University of Thessaly

Volos, Greece
{fevgas,yota,pbozanis}@inf.uth.gr

Abstract. In the recent years, flash memory has been widely utilized as storage
medium to mobile and embedded systems, laptops and servers. However, due to
its idiosyncrasies (asymmetric read/write speeds, erase before update, wear out)
it introduces new challenges for researchers. Many studies, especially in the field
of databases, investigate for algorithms and data structures optimized for flash.
The outstanding efficiency of this new storage medium, motivated us to study
the performance of out-of-core, sparse, linear system solvers in flash SSDs. Two
solvers PARDISO and MUMPS with out-of-core functionality were evaluated
both on SSD and HDD. Experimental results show that PARDISO execution time
is improved by a factor of two to three in most of the test cases. Performance gain
for MUMPS exists but it is less.

1 Introduction

Flash memory is a non-volatile electronic storage that can be electrically erased and
reprogrammed. There are two types of flash, NOR and NAND with the later utilized as
mass storage medium. In the rest of this document the term flash denotes the NAND
flash. Storages based on flash lack mechanical and moving parts, providing low power
consumption, shock resistance and high read/write performance. Flash consists of cells
which store one (SLC) or more bits (MLC). Cells are organized to pages and pages to
blocks, with typical page sizes to vary from 512 bytes to 16Kb and block sizes from
32Kb to 512Kb. Reads and writes are performed at page level, while erases at block
level. Write operations are slower than reads and erases are even slower. Moreover,
pages have to be erased before are re-written and flash endurance is limited by a finite
number of write/erase cycles (wear out).

Solid state drives (SSDs) are block devices compatible with traditional hard disk
drives (HDDs) relying in flash. The main components of an SSD are the flash memory
chips and a controller which emulates the block interface using FTL (Flash Transla-
tion Layer). FTL remaps logical addresses, used by the upper layers, to physical ad-
dresses in flash chips. It incorporates out-of-place-updates, wear leveling and garbage
collection mechanisms aiming to improve write performance and prevent wear-out.
Specifically, out-of-place-update mechanism redirects update requests to clean (already
erased) pages invalidating the old ones. Wear leveling distributes writes across medium

.

OpenAccess

Proceedings of the 6th International Conference on Numerical Analysis, pp 97-102

ISBN: 978-960-8475-22-9 ©AMCL/TUC http://lib.amcl.tuc.gr/handle/triton/36



to prevent wear out of certain cells and garbage collection algorithms take care of re-
claiming invalidate pages.

All the above make clear that data structures and algorithms designed for hard disks
do not perform well in flash. Thus, recent studies in databases endeavor to design flash
efficient indexes and buffer managers, reducing expensive write operations and exploit-
ing fast random reads.

In several cases log-based data structures are utilized for updating indexes instead
of performing expensive page rewrites. The delta records are accumulated to a main
memory buffer and persisted to flash in batches when the buffer is full in [1]. A node
translation table is maintained, for mapping the tree-nodes with the flash pages that
store their log records. All delta records for a particular tree-node, are aggregated to
continuous flash pages if a spread limit is reached. In LCR-tree [2] all the deltas for an
R-tree node are stored to the same flash page assuring one additional read for each node
access. Other researchers propose lazy updating of B+tree nodes [3] using flash resident
cascading buffers that store updates for a node and its children. Updates are propagated
in batch to the buffers of the next level sub-tree. This approach is more memory efficient
compared to the previous ones. In the same context, an overflow buffer technique for
R-tree is proposed [4] deferring spit operations in the future in order to reduce random
writes. Researchers in [5] experimentally found that read and write operations in flash
may benefit by SSD internal parallelism. Thus, they proposed an efficient method to
perform parallel reads and writes using asynchronous I/O and applied it for B+tree
optimization.

Traditional buffer replacement algorithms focus on maximizing hit ratio, but do not
pay any attention for reducing writes, since reads and writes cost the same in HDDs.
Therefore, new algorithms have been proposed that try to reduce writes in flash resident
databases. The eviction of clean pages from a window of the w least recently used
pages in the buffer have been introduced in [6]. An improved algorithm which takes
into account not only the recency but and the frequency of references as well, was
proposed in [7].

The development of efficient external memory algorithms for solving linear equa-
tions systems or calculating eigenvalues of large matrices has been a popular research
topic. Several algorithms have been proposed pursuing to accelerate calculations by
efficiently partitioning and managing large disk-resident datasets into main memory
blocks. TAUCS [8] is a representative example of a C library of sparse linear solvers
for external memory. More recent studies [9, 10] deal, among others, with matrix parti-
tioning, prefetching and overlapping I/O and computations. Alternative in-core (IC) ap-
proaches require clusters with distributed memory, large enough for the entire dataset,
and high bandwidth interconnections.

Nowadays, the emergence of multicore and GPU accelerated computers provides
high processing power at low cost. On the other hand, non-volatile memories are ca-
pable to accelerate the storage layer. The outstanding performance of enterprise-level
flash-based storage systems motivated authors of [11, 12] to address the problems of
sparse matrix vector multiplication (SpMV) and large scale eigenvalues calculation us-
ing an SSD equipped cluster. A high level abstraction and a middleware for distributed
out-of-core (OOC) computations were introduced providing a simple application in-

98 Out-of-Core Linear Algebra Algorithms in Flash based Storage

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference



terface for linear algebra operations. Several experiments were conducted in order to
evaluate the performance of out-of-core implementations.

The performance of three different out-of-core solvers (MUMPS, Intel MKL PAR-
DISO, and HSL MA78) was studied in [13]. The solvers were evaluated for the solution
of three dimensional Navier-Stokes finite elements formulations. In-core and out-of-
core CPU time and memory requirements were measured for each solver and PARDISO
was classified as the best.

Considering the benefits of flash based storages, we study the performance of out-
of-core versions of Intel MKL PARDISO (Parallel Direct Sparse Solver) and MUMPS
(MUltifrontal Massively Parallel sparse direct Solver) in solid state disks.

2 Out -of-Core Sparse Solvers

PARDISO [14, 15] is a shared memory multiprocessing parallel direct solver for large
sparse linear systems of equations. It supports real, complex, symmetric, structurally
symmetric, unsymmetric, positive definite, indefinite and Hermitian systems. PAR-
DISO conducts the solution of a linear system in three phases: a) analysis and symbolic
factorization, b) numerical factorization and c) forward and backward substitution in-
cluding iterative refinement. The Intel MKL version of PARDISO supports out-or-core
functionality, utilizing external memory to retain matrix factors. PARDISO might be
called either by FORTRAN or C/C++ programs.

MUMPS [16, 17] is a parallel direct solver for sparse linear equations and like PAR-
DISO it provides out of core functionality. It supports unsymmetric, symmetric positive
definite, or general symmetric systems. The solving procedure involves three steps: a)
analysis, b) factorization and c) solution. MUMPS relies on MPI for parallelization,
a host processor distributes the matrix and aggregates the results. The host processor,
performs the most tasks of the analysis stage. MUMPS is developed in FORTRAN but
provides C, Matlab, Octave and SciLab programming interfaces as well.

3 Experiments

In this paper we aim to evaluate the OOC functionality of two state of the art sparse
direct solvers, Intel MKL PARDISO and MUMPS. Our evaluation focus on the perfor-
mance of each solver in terms of memory usage and execution time for HDD and SSD
drives. The experiments were performed on two DELL Precision T3500 workstations
equipped with 8GB of DDR3 RAM and a 4-core Intel Xeon W3550 3.06GHz CPU
each. The first workstation is configured with an Intel 520 SSD 240GB (connected to
SATA-III interface) as booting device (INTEL in Tables 2, 3) and an OCZ Revodrive
350 PCIe 480GB as additional storage device (OCZ in Tables 2, 3). The Intel 520 drive
is able to deliver 550 MB/s in sequential reads operations and 540 MB/s in sequential
writes. The OCZ SSD succeeds up to 1800MB/s and 1700MB/s in sequential reads
and writes, respectively. The second workstation utilizes a Seagate Barracuda 7200rpm
1TB hard drive with max supported data rate up to 210MB/s (HDD in Tables 2, 3).
Both workstations run Centos 6.5 with kernel 2.6.32-431.el6.x86 64 operating system
and are configured with 8GB of swap space. Intel MKL version 11.1.2 and Intel ICC

Fevgas A., Tsompanopoulou P. and Bozanis P. 99

Proceedings of NumAn2014 Conference Sept 2-5, Chania, Crete, Greece



Table 1. Test Matrices

Matrix Type Equations Non-zeros Description

INLINE 1 R, S, PD 503,712 18,660,027 Parasol project
ASTER PERF002C R, S, I 1,008,012 37,926,024 Structural engineering
ASTER PERF011A R, S, I 853,632 71,098,992 Structural engineering
ATMOSMODL R, U, I 1,489,752 10,319,760 Atmospheric modeling
AUDIKW 1 R, S, I 943,695 39,297,771 Automotive model
NICE20MC R, S, I 715,923 28,066,527 Earthquake dynamic analysis

14.0.2 compiler were used for PARDISO and GCC 4.4.7 compiler and OpenMPI (4
parallel processes) were utilized for MUMPS experiments. PARDISO uses METIS [18]
algorithm for reordering while MUMPS utilizes PORD [19].

Test data were derived from Sparse Matrix Collection1 of the University of Florida
and GRID-TLSE2 project website. Real, symmetric and unsymmetric linear systems of
equations were examined. A detailed description of the test sets is given in Table 1. All
tests were repeated for three times and the average values are presented in the following.
The wall-clock time of the out-of-core runs for each of the two SSDs and the HDD is
given, along with in-core times for comparison purposes. The in-core experiments were
executed on the SSD enabled workstation. Memory requirements for both out-of-core
and in-core executions were also recorded.

Table 2. Performance of PARDISO

OOC PARDISO IC PARDISO

MATRIX Wall-clock time (sec) Memory (GB) Wall-clock
time (sec)

Memory
(GB)

OCZ INTEL HDD IC OOC
INLINE 1 39.33 38.33 43.33 0.67 1.45 22 1.80
ASTER PERF002C 160 221.33 485 1.38 7 179.67 7.28
ASTER PERF011A 582.33 757 1,620.67 2.31 14.9 - 14.72
ATMOSMODL 654.50 796 1,379.67 1.21 15 - 15.65
AUDIKW 1 367.33 441 758 1.51 10.05 817 10.57
NICE20MC 274.00 327 549 1.08 8.59 553.67 9.06

Out-of-core PARDISO solver runs 2 to 3 times faster to the SSD enabled worksta-
tion, for the five out of six datasets. The gain is less for the INLINE 1 dataset, probably
because the amount of I/O is less, thus have no significant affect to the overall execution
time of the OOC algorithm. The IC execution is faster than OOC for small data sets, but
when memory requirements increase and swapping is involved then IC performs worse.

1 http://www.cise.ufl.edu/research/sparse/matrices
2 http://tlse.enseeiht.fr

100 Out-of-Core Linear Algebra Algorithms in Flash based Storage

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference



Table 3. Performance of MUMPS

OOC MUMPS IC MUMPS

MATRIX Wall-clock time (sec) Memory (GB) Wall-clock
time (sec)

Memory
(GB)

OCZ INTEL HDD IC OOC
INLINE 1 42.7 42.3 43.3 0.6 1.4 42.67 2.8
ASTER PERF002C 485.7 503.7 556.3 2.1 6.9 583 13.6
ASTER PERF011A 3,906 3,961.5 4,428 9 14.8 - 37.7
ATMOSMODL 2,349.3 2,384 2,480.5 5.3 13.9 - 27.8
AUDIKW 1 1,362 1,392.7 1,495.3 4.7 9.4 - 19.3
NICE20MC 1,388.7 1,561 1,629 4.6 9.1 - 20.68

Table 3 shows the performance of the MUMPS solver. A performance gain for the
SSDs still exists, but in this case is much less. Moreover, the overall performance of
MUMPS is lower compared to PARDISO and main memory requirements are quite
longer for both OOC and IC execution. It is noticeable that four of the linear systems is
not possible to be solved in-core.

4 Conclusions

Flash is a new type of non-volatile memory with outstanding efficiency compared to
hard drives. However, its specific characteristics make algorithms designed for rota-
tional disks not perform well. We tried to describe the characteristics of this new storage
medium and highlight the possible benefits of use in numerical linear algebra. There-
fore, we evaluated the performance of OOC versions of Intel MKL PARDISO and
MUMPS sparse, direct solvers. Experiments show that PARDISO benefits significantly
from SSD storage, while, performance gain in MUMPS is less but exists. Experiments
unveil that out-of-core execution outperforms in-core when the swapping is used.

Relying to the above we argue that flash enabled storages are able to lead to im-
portant savings of computational time in numerical linear algebra, but more research is
needed in order to exploit their full advantages. Our future work aims to develop flash
efficient algorithms for out of core execution for linear algebra methods.

Acknowledgement

The present research work has been co- nanced by the European Union (European So-
cial Fund ESF) and Greek national funds through the Operational Program Education
and Lifelong Learning of the National Strategic Reference Framework (NSRF) - Re-
search Funding Program: THALIS . Investing in knownledge society through the Euro-
pean Social Fund (MIS 379416).

Fevgas A., Tsompanopoulou P. and Bozanis P. 101

Proceedings of NumAn2014 Conference Sept 2-5, Chania, Crete, Greece



References

1. Wu, C.H., Kuo, T.W., Chang, L.P.: An efficient b-tree layer implementation for flash-memory
storage systems. ACM Transactions on Embedded Computing Systems (TECS) 6 (2007) 19

2. Lv, Y., Li, J., Cui, B., Chen, X.: Log-compact r-tree: an efficient spatial index for ssd. In:
Database Systems for Adanced Applications. Springer (2011) 202–213

3. Agrawal, D., Ganesan, D., Sitaraman, R., Diao, Y., Singh, S.: Lazy-adaptive tree: An op-
timized index structure for flash devices. Proceedings of the VLDB Endowment 2 (2009)
361–372

4. Wang, N., Jin, P., Wan, S., Zhang, Y., Yue, L.: Or-tree: An optimized spatial tree index for
flash-memory storage systems. In: Data and Knowledge Engineering. Springer (2012) 1–14

5. Roh, H., Park, S., Kim, S., Shin, M., Lee, S.W.: B+-tree index optimization by exploiting
internal parallelism of flash-based solid state drives. Proceedings of the VLDB Endowment
5 (2011) 286–297

6. Park, S.y., Jung, D., Kang, J.u., Kim, J.s., Lee, J.: Cflru: a replacement algorithm for flash
memory. In: Proceedings of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems, ACM (2006) 234–241

7. Jin, P., Ou, Y., Harder, T., Li, Z.: Ad-lru: An efficient buffer replacement algorithm for
flash-based databases. Data & Knowledge Engineering 72 (2012) 83–102

8. Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers (2003)
9. Castellanos, J., Larrazabal, G.: A cholesky out-of-core factorization. Mathematical and

Computer Modelling 57 (2013) 2207–2222
10. IGUAL, F., MARQUES, M., VAN DE GEIJN, R.A.: (A run-time system for programming

out-of-core matrix algorithms-by-tiles on multithreaded architectures)
11. Zhou, Z., Saule, E., Aktulga, H.M., Yang, C., Ng, E.G., Maris, P., Vary, J.P., Catalyurek,

U.V.: An out-of-core dataflow middleware to reduce the cost of large scale iterative solvers.
In: Parallel Processing Workshops (ICPPW), 2012 41st International Conference on, IEEE
(2012) 71–80

12. Zhou, Z., Saule, E., Aktulga, H.M., Yang, C., Ng, E.G., Maris, P., Vary, J.P., Catalyurek, U.V.:
An out-of-core eigensolver on ssd-equipped clusters. In: Cluster Computing (CLUSTER),
2012 IEEE International Conference on, IEEE (2012) 248–256

13. Raju, M., Khaitan, S.: High performance computing using out-of-core sparse direct solvers.
International Journal of Mathematical, Physical and Engineering Sciences 3 (2009) 377–383

14. Schenk, O.: Scalable parallel sparse lu factorization methods on shared memory multipro-
cessors. (2000)

15. Schenk, O., Gartner, K.: Solving unsymmetric sparse systems of linear equations with par-
diso. Future Generation Computer Systems 20 (2004) 475–487

16. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y., Koster, J.: A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Appli-
cations 23 (2001) 15–41

17. Amestoy, P.R., Guermouche, A., L Excellent, J.Y., Pralet, S.: Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing 32 (2006) 136–156

18. Karypis, G., Kumar, V.: A software package for partitioning unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse matrices. University of Minnesota,
Department of Computer Science and Engineering, Army HPC Research Center, Minneapo-
lis, MN (1998)

19. Schulze, J.: Towards a tighter coupling of bottom-up and top-down sparse matrix ordering
methods. BIT Numerical Mathematics 41 (2001) 800–841

102 Out-of-Core Linear Algebra Algorithms in Flash based Storage

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference


