Proceedings of the 6th International Conference on Numerical Analysis, pp 1-6

[

"i)})// NumAn2014 Conference Proceedings ==

Digital Library Triton : http://lib.amcl.tuc.gr

\

Contents lists available at AMCL'’s Digital Library

B

Application of a hybrid parallel Monte Carlo
PDE Solver on rectangular multi-domains

Panayiotis Alefragis®, Alexandros Spyrou’, Spiridon Likothanassis®
“Computer and Informatics Engineering Dept.
Technologigal Educational Institute of Western Greece
Antirio, Nafpaktos, Greece
Computer Engineering and Informatics Department
University of Patras

Rio, Patras, Greece
alefrag@teimes.gr, kspyrou, likothan@ceid.upatras.gr

Abstract. The paper presents a hybrid parallelization approach that uses MPI
and POSIX threads to harness the performance of clustered multicore servers
in solving Poisson Elliptic PDEs on 2D and 3D rectangular multi-domains us-
ing the Monte Carlo method. A sequential performance analysis and the parallel
performance achieved on a virtual cluster are presented. Extensive results using
different parameter configurations are discussed and comparison between the per-
formance of sequential and the hybrid implementations are presented. The hybrid
implementation manages to demonstrate significant speedup while maintaining
the quality of the solution on sample input datasets. Finally, insight for further
extensions to the proposed algorithm are presented.

Key words: Hybrid Parallel Programming, MPI, POSIX Threads, Monte Carlo PDE solver.

Introduction

The Monte Carlo method is known for many years but only after the advent of the
first electronic computers, the method has received an increasing interest as a tool for
solving important physical problems. Monte Carlo algorithm generates a random walk
using a proposed density and includes a method for rejecting / accepting the proposed
moves. Nowadays it is used in nearly every aspect of scientific inquiry. Monte Carlo
methods always attracted people working in the field of numerical solutions of PDE.
This attraction has been evolved with the passing of the years together with the rapid
changes in technology like parallel computing , clusters etc. [1] [2] [3].

The paper is organized as follows. In section 2 we present the sequential analysis of
the algorithm. The distributed memory parallelization approach is presented in section
3. Parallel platform details and experimental results can be found in section 4. Finally,
conclusions and future extensions are given in section 5.

ISBN: 978-960-8475-22-9 ©AMCL/TUC hitp://lib.amcl.tuc.gr/handle/triton/20

2 Hybrid parallel Monte Carlo PDE Solver

Base Algorithm Analysis

Base Algorithm Description

The initial step in harnessing the performance of a multicore cluster was to perform a
profiling of the sequential implementation to identify hotspots in the code that could
lead to reduced execution times, if they were efficiently parallelized. The performance
analysis was based on an implementation of the algorithms proposed in Vavalis et al. [4].
The aforementioned implementation is able to solve Poisson’s equation with Dirichlet
boundary conditions on 2D and 3D hyper rectangles domains, but can easily be ex-
tended to use other methods and domains. The algorithm is a hybrid algorithm in the
sense that both not deterministic and deterministic methods are used to solve the do-
mains. Initially, a probabilistic domain decomposition is applied to compute local solu-
tions’ estimates along the boundaries of the subdomain using the Monte Carlo method
[5] and subsequently an interpolation of the estimated local solutions is applied. In par-
ticular, for 2D domains the Burkardt’s splines library is used [7], while the Multilevel
B-spline (MBA) [8] library is used for the 3D domains to form boundaries of the new
subdomains. Finally, as the boundaries of the subdomains are known a deterministic
Laplace Solver that utilizes Deal Il [9] is used to find the solution of the problem for
each subdomain. The base implementation can be described by pseudo code in Fig-
ure 1. An interesting implementation detail was that shared memory parallelization was
already supported using the Pthreads library.

Determine the node coordinates of all subdomains
For each node

Generate one job

Assign the job to a thread

Perform Monte Carlo to estimate node values
Use (2D|3D) interpolation function to find new boundaries
For each subdomain

Generate one job

Assign the job to a thread

Solve using Laplace solver
Output the results

Fig. 1 Pseudo Code of base algorithm

Base Code Profiling

Before parallelizing legacy code in a distributed memory architecture a profiling step is
important in order to pin point where the code spends execution time and to determine
execution sequence. In this way, the code can be segmented to kernels that can be an-
alyzed to determine if it is possible to harness computational resources in parallel and
if the parallelization of the kernel will have significant impact on the overall execution
of the profiled program. We have performed an extensive performance analysis using
a number of different configurations of parameters for the used problem set, see Table
1, and we have identified 3 kernels that could potentially improve the overall perfor-
mance if a distributed implementation existed. The three kernels are the Monte Carlo
algorithm, the Interpolation Algorithm and the Laplace Solver. As for most input prob-
lems the Monte Carlo Algorithm was taking from 50% to 94% of the execution time,

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference

Alefragis P., Spyrou A. and Likothanassis S. 3

we focused our efforts in efficiently parallelizing the Monte Carlo algorithm using MPI.

Table 1 presents the main characteristics of the input problem set. dim represents if
the problem is 2D or 3D, dlen the length of the domain along each dimension, subd
the number of subdomains along each dimension, dect the decomposition type for each
dimension with u representing uniform and n non-uniform, decc the coordinates of the
interfaces corresponding to each dimension along which the domain is decomposed
non-uniformly, nppp the number of nodes on an interface along a dimension. For 2D it
takes 2 arguments corresponding to the decomposing lines along dimension Y and X
respectively, while for 3D it takes 6 arguments, with each pair corresponding to the de-
composing planes YZ, XZ and XY respectively. Finally, btol represents the boundary
tolerance. Table 2 displays the percentage of the sequential execution time for different

Table 1. Problem set characteristic.

Problem|dim|dlen subd |dect |decc nppp btol
1 2D |1.1. |24 |nu |3 1212 le-15
2 2D |1.1. |24 |nn [3.255.7 1212 le-15
3 2D [1.1. |24 |nn |3.255.7 1212 le-15
4 3D |1.1.1.5[332|uuul5555 1212 le-15
5 3D |1.1.1.5[332|unul.5.555555 555577|1e-15
6 3D |1.1.1.5]332|nnn|.5.4.5.551.25555|555577|le-15
7 3D |1.1.1.5[332/nnn|.5.4.5.55125555|555577|le-15

walk sizes of the problem set for the aforementioned kernels, with MC standing for
Monte Carlo, I for Interpolation and LS for the Laplace Solver.

Table 2. Performance analysis

Walks 5K 20K 80K
ProblemMC| I |LS |MC| I |LS|MC| I |LS
1 60%| - | 5% |19%| - |4%|95%| - |5%
50%| - | 10 [76%| - [3%(90%| - |5%
74%| - | 9% (88%| - |4%(92%| - |4%
80%(13%| 7% |85%|11%|4%|88%|5%|7%
70%|20%|10%|83%| 9% (8% |90%|6%|4%
78%|12%|10%|84%|10% (6% |94%|3%|1%
74%|10%| 6% (81%|11%|8%|90%|6%|4%

=[N O\ | B W[N

Hybrid Parallelization Approach

As the base implementation already supports shared memory parallelization of the
Monte Carlo and Laplace Solver using Pthreads, we focused on directly implement-

Proceedings of NumAn2014 Conference Sept 2-5, Chania, Crete, Greece

Hybrid parallel Monte Carlo PDE Solver

ing a hybrid parallel approach using OpenMPI [6] for inter process communication.
Based on the experimental results of the performance analysis, we concluded that:

1. asimple master/worker scheme was sufficient to distribute the computation load of
the Monte Carlo kernel between processes. This was due to the fact that each Monte
Carlo thread work is mainly determined by the number of walks so a fair distribu-
tion of nodes between the worker process and subsequently the local distribution
of nodes between threads will not create a major load imbalance.

2. the master process could efficiently perform the interpolation and the Laplace Solver
Kernel for each subdomain locally using threads, after it has received the required
estimation of the relevant nodes from the other processes.

The base code logic remains mainly unchanged. A layer that distributes the computa-
tional load between and gathers the estimation results from each worker process was

added.

Experimental Results

We have performed extensive experimental tests on a 8 machines virtual cluster running
over an OpenStack Cloud infrastructure of the computing center of the Computer and

Table 3. Hybrid execution times and achieved speed up

Problem 1 2
np 1 21418163264 1 2 4 8 16 | 32 | 64
nt.
Walks 1 |2]4|6|6|8 |81 2 4 6 6 8 8
40K [26 [8| 6|3 (34|32 9 7 4 3 3 4
80K (49 |14(11|5 |4 | 6|5 |50]| 14 0| 6 4 5
160K | 98 [24119| 9 |6 | 6| 8 | 99 | 25 91 9 6 7 9
Problem 3 4
40K | 25 |10 5|3 |3 |2 |3 |538|183]120| 70 | 62 | 68 | 77
80K | 40 (2610 4 | 3 |4 | 4 |931|298|170| 88 | 80 | 86 | 90
160K | 99 [38|18| 8 | 5| 6 | 6 [1777[511|295 | 124 | 109 | 122 | 129
Problem 5 6
40K | 534 183[120|70 |62 | 68|74 494|176 (423 | 78 | 72 | 75 | 77
80K [946 (298(170| 88 [180| 86|90 | 847|273 |164| 97 | 82 | 92 | 94
160K [1757|511{295(124(109|122{129{1550(464 | 292 | 135 | 106 | 121 | 130
Problem 7 Problem Set
40K | 365 (176(109| 78 | 72 | 75| 77 |2008| 745 | 610 | 306 | 277 | 295 | 312
80K | 713 |273(164| 97 | 82 | 92 | 94 |3576(1196| 699 | 385 | 335 | 371 | 382
160K |1416|464(292{135|105|121{130({6796|2037|1230| 544 | 446 | 505 | 541
Problem Set Speedup Min 2.812.03] 6.33 | 6.86 | 6.59 | 6.42

Avg [3.084.17] 8.85 [10.60| 9.53 | 9.12

Max|3.34|5.13(11.48{14.62{12.81|11.92

Informatics Department of the TEI of Western Greece. The cloud infrastructure uses a

Sept 2-5, Chania, Crete, Greece

Proceedings of NumAn2014 Conference

Alefragis P., Spyrou A. and Likothanassis S. 5

Dell Blade Enclosure with 16 dual processor Xeon servers, with each processor having
6 hyper-threading cores and 48Gbytes of main memory. The blades were interconnected
with 1 GBit Ethernet. Each virtual machine had 4 virtual CPUs and 8 GBytes RAM.
For all the available problem in the input set, we created all run combinations for the
maximum number of threads nr={1,2,4,6,8} per process np={1,2,4,8,16,32,64} and the
number of random walks to be performed per node by the Monte Carlo algorithm, walks
= {20K, 40K, 80K, 160K} in order to be able to determine the speedup and the scal-
ing of the proposed approach. For the profiling of the hybrid implementation we have
used mpiP profiler [10] which is a lightweight profiling library for MPI applications.
Because it only collects statistical information about MPI functions, mpiP generates
considerably less overhead and much less data than tracing tools. All the information
captured by mpiP is task-local.

Table 3 presents the execution time and the speed up achieved for all the input
set. Due to space restriction only part of the results are presented. Detailed executions
analysis show that the hybrid algorithm scales almost linearly to the number of active
processing threads, ie the number of processes multiplied by the number of threads,
until the execution time of the Monte Carlo kernel is significantly reduced due to paral-
lelization and the other kernels now dominate the execution time. Figure 2 presents the
speedup and the execution time for some of the input examples.

Problem 2 Problem 4

execution Time
&
Speedup
execution Time
Speedup

O R JA T A N S S Y & o> T S S S 9 o>
x\%%ob@@@@?ﬁx@w xx%sbb@@p@?@\@

Active Processing Threads Active Processing Threads

Problem 6 Problem 7

execution Time
Speedup
execution Time
15
Speedup

AR I I R R P R RS I O A B B B A

Active Processing Threads Active Processing Threads

Fig. 2 Execution time and speedup for 160K walks

Conclusions and Future Work

This paper analyzes the sequential performance of a PDE solver that is applied on Ellip-
tic PDEs (and Poisson in particular) on rectangular multi-domains in both two and three

Proceedings of NumAn2014 Conference Sept 2-5, Chania, Crete, Greece

6 Hybrid parallel Monte Carlo PDE Solver

dimensions. The paper presents implementation details and extensions to the sequential
algorithm in order to allow efficient implementation in a distributed memory environ-
ment. The experimental results presented show that an efficient implementation of the
base algorithm can be achieved on distributed memory architectures. The hybrid imple-
mentation manages to demonstrate significant speedup while maintaining the quality of
the solution on sample input datasets. Our future plans include the parallelization of the
Laplace Solver on distributed memory machines and and the integration of the hybrid
algorithm to the Fenics platform [11].

References

1. K. P. Esler, Jeongnim Kim, L. Shulenburger, and D.M. Ceperley ”Fully accelerating quantum
Monte Carlo simulations of real materials on GPU clusters”

2. John Strikwerda, ”Finite Difference Schemes and Partial Differential Equations”, SIAM, 2nd
edition, 2004.

3. Norma Alias , "Some Parallel Numerical Methods in Solving Partial Differential Equations
”, submitted 2nd International Conference on Computer Engineering and Technology,2010.

4. G. Sarailidis and M. Vavalis, ”Hybrid Solvers for Elliptic PDEs on rectangular multi-domains
in 2 and 3 dimensions”, submitted to Scientific Computing, 2013.

5. J.M Delaurentis, L.A Romero, "A Monte Carlo method for poisson’s equation”, Journal of
Computational Physics, Volume 90, Issue 17, September 1990, Pages 123-140, ISSN 0021-
9991, http://dx.doi.org/10.1016/0021-9991(90)90199-B.

6. Edgar Gabriel et al. "Open MPI: Goals, Concept, and Design of a Next Generation MPI Im-
plementation”, In Proceedings, 11th European PVM/MPI Users’ Group Meeting, Budapest,
Hungary, September 2004.

7. SPLINE, a C++ library which constructs and evaluates spline functions.
http://people.sc.fsu.edu/jburkardt/cpp_src/spline/spline.html

8. MBA - Multilevel B-Spline Approximation Library
http://www.sintef.no/Projectweb/Geometry-Toolkits/MBA/

9. deal Il - an open source finite element library http://www.dealii.org/

10. mpiP Profiler - a lightweight profiling library for MPI applications.
http://mpip.sourceforge.net/

11. Fenics - The FEniCS Project is a collection of free software with an extensive list of features
for automated, efficient solution of differential equations. http://fenicsproject.org/

Acknowledgments

The present research work has been co-financed by the European Union (European
Social Fund ESF) and Greek national funds through the Operational Program Educa-
tion and Lifelong Learning of the National Strategic Reference Framework (NSRF) -
Research Funding Program: THALIS . Investing in knownledge society through the
European Social Fund (MIS 379416).

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference

