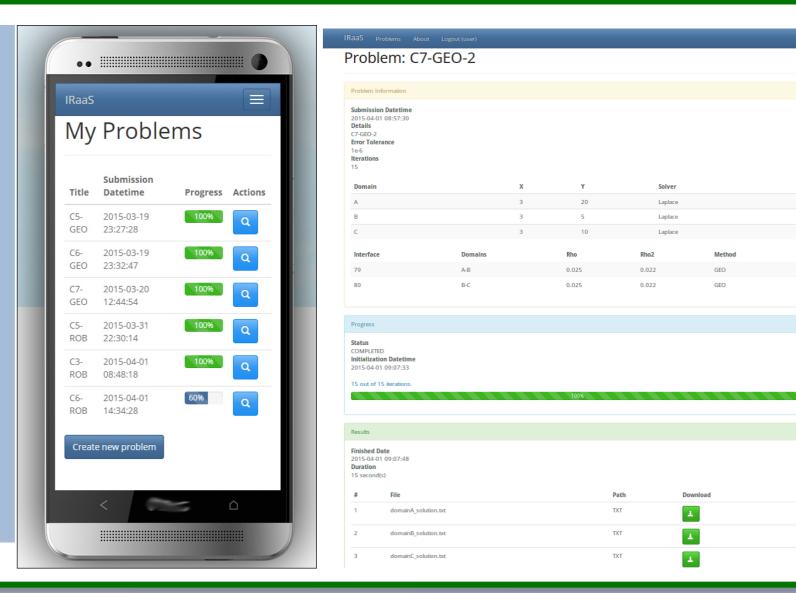
Implementation on Parallel Architectures Application: Interface Relaxation as a Service (IRaaS) S. Likothanassis, P. Alefragis and A. Korfiati

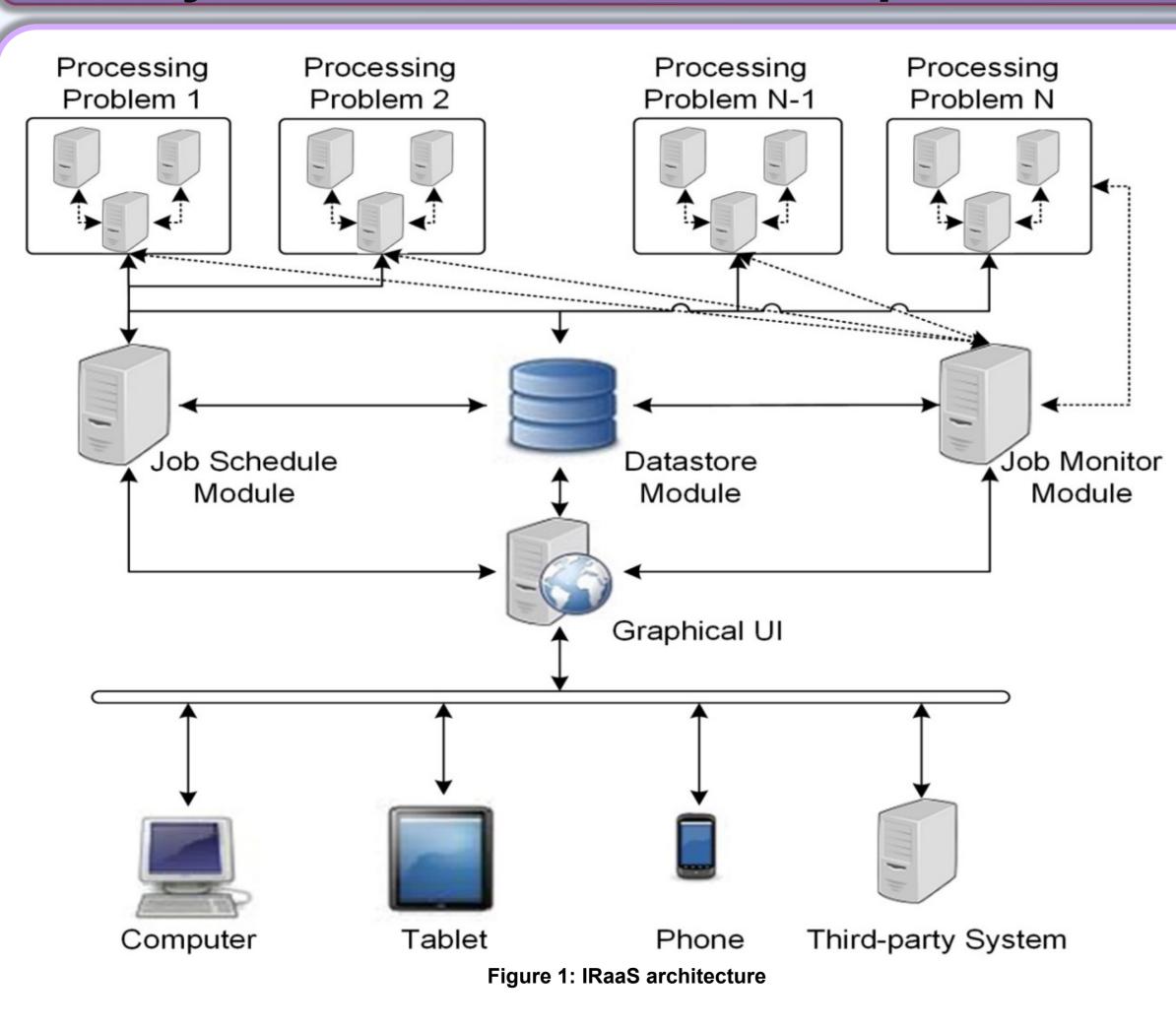
IRaaS Application


The proposed cloud application is a **solution environment** for **multiphysics/multidomain problems**


- implementing the interface relaxation methodology, and
- utilizing **cloud technologies** that manage pre-existing hardware, network, operating system and applications.

The user sets the problem's parameters, chooses the interface relaxation method (**GEO/ROB**) that fits better to the specific problem and finally gets the problem solution from any place and any device.

The application **dynamically allocates** the **minimum possible resources** automatically **in the background** without the user's interference [1], [2].


An asynchronous implementation of GEO has also been implemented [3].

Experiments and Results

System architecture's components

The proposed application is based on the management of the allocation of the cloud resources in order to create groups of virtual machines for parallel processing. Furthermore, it provides the appropriate interfaces to end-users and systems for accessing the platform.

The major functional components of the architecture are the following:

• The **Graphical GUI** where each user has the ability to register for a new account or log in to an existing one. When logged in, users can define new problems by inserting the appropriate input and choosing the desired IR method for the problem solution. During the solution process, they can review their problems' solution status and details. Furthermore, third party systems can access the services provided by the application through a simple HTTP API that is loosely based in the exchange of JSON messages. • The Job Schedule Module which is responsible to orchestrate problem execution on the cloud infrastructure. Its duties consist of a) the resources allocation needed by the Virtual Solver Nodes for the problem execution, b) the deployment of the eligible VMs along with their information, c) the initialization of the problems and d) the deletion of the VMs after the execution is finished. • The Job Monitor Module is an Advanced Message Queue Server (AMQS) that handles the communication between the entities of the system. AMQS is based on the Advanced Message Queuing Protocol (AMQP) which connects systems and manages the information and messages exchange between them. A more extensive interpretation is that with AMQP programs and systems can produce and send messages, while other programs and systems can receive them and process them. In the present work RabbitMQ has been used. RabbitMQ is a messaging broker based on the AMQP and offering a common platform to send and receive messages while these messages stay safe until they reach their final destination.

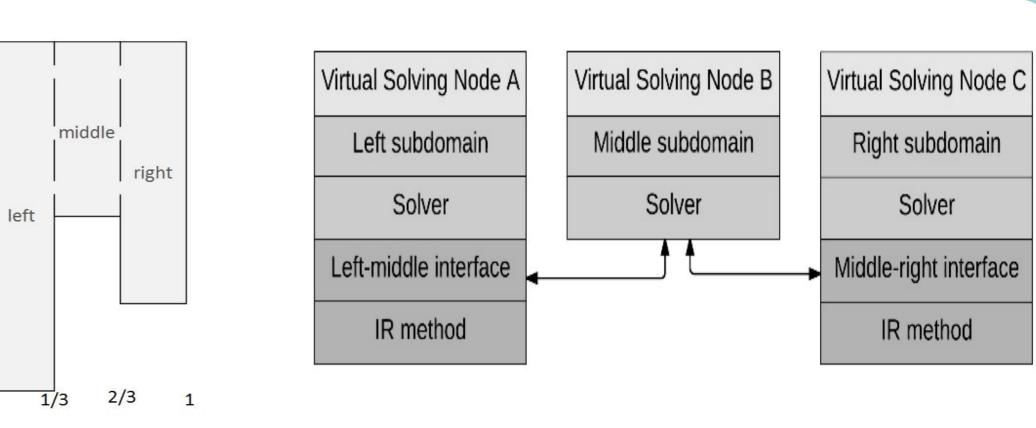


Figure 2: Examined problem

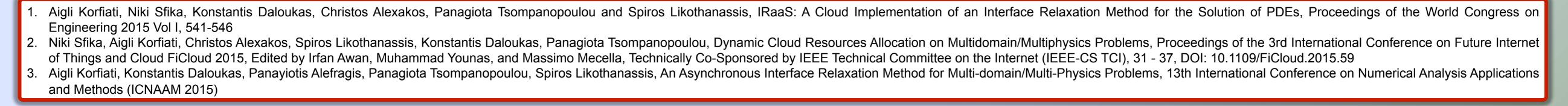
0

Figure 3: IR distributed solution

TABLE I CONSIDERED CASES									
Case	h	Left	Middle	Right					
C1	0.1	4x21	4x6	4x11					
C2	0.05	8x41	8x11	8x21					
C3	0.025	14x81	14x21	14x41					
C4	0.0125	28x161	28x41	28x81					
C5	0.00625	55x321	55x81	55x161					
C6	0.003125	108x641	108x161	108x321					
C7	0.0015625	214x1281	214x321	214x641					

TABLE II RESOURCES												
Pacouroas	Left domain				Middle domain			Right domain				
Resources	cores	GHz	GB	cores	GHz	GB	cores	GHz	GB			
R1	1	2	1	1	2	1	1	2	1			
R2	1	2	2	1	2	2	1	2	2			
R3	1	2	4	1	2	1	1	2	2			
R4	1	2	4	1	1.5	2	1	2	2			
TABLE III EXECUTION TIMES												
Resources/C	Resources/Case R1				R2		R3	R4				
C1	C1		15.041		15.082		15.016	15.042				
C2			15.411		15.457		15.320	15.345				
	C3		15.724		15.894		15.736	15.735				
C4			19.169		21.442		19.234	19.334				
C5			28.548		37.271		28.669	28.470				
C6 C7			71.416 500.146		81.252 307.241		70.972 297.122	71.499 298.870				
01		000	J. 140		.271				0.070			
if subdomain s	if subdomain size <= 75000:				Problem			Execution Times				
	virtual solving node RAM = 1GB						ROB		GEO			
	virtual solving node processor = 1core, 2GHz				P1			5.348 15.041				
	else if 75000 < subdomain size <= 150000:				P2			0.373 15.411				
virtual solving node RAM = 2GB virtual solving node processor = 1core, 2GHz				P3				22 15.724				
	else if subdomain size > 150000:				P4		19.223					
	virtual solving node RAM = 4GB				P5			27.313 28.548				
virtual so	virtual solving node processor = 1core, 2GHz				P6			65.386 71.416				
						P7			265.415 297.122			
	Comparison Analysis											
	Problem		Virtual	Propos	Proposed Cloud Implementation		tual	Proposed				
				Implem			entation	Cloud				
		Impleme	Implementation ROB		ROB		ΞO	Implementation				
								GEO				
	P1		16.004		15.348		495	15.041				
	P2		16.281		15.373		068	15.411				
	P3		17.392		16.022		140	15.724				
	P4		23.634		19.223		595	19.169				
	P5		45.456		27.313 5		808	28.548	28.548			
	P6		132.179		65.386		.633	71.416				
	P7	1	099.05	265	5.415	735	.731	297.122				

- The **DataStore Module** can be accessed from all the system components and stores the input data, the results and the intermediate data of the users' problems.
- The Virtual Solving Nodes are created by the Job Schedule Module in order to start the problem execution. During the execution, they inform the Job Monitor Module about the state of the problem and once they finish the execution, they send their final results back to the Job Monitor Module. After job completion they are deleted.
- Figure 1 depicts an overview of the proposed system's architecture with all the system's modules and their interactions, where dotted lines present communication between modules. The AMQS infrastructure is utilized for the communication between the various modules. AMQS-based communication is used in the following interaction scenarios: a) inside Virtual Solving Nodes for the interface values and b) between the Virtual Solving Nodes and the Job Monitor Module for progress monitoring as depicted in dotted lines.


Conclusions and Future Work

We have presented a cloud-driven application for the solution of multidomain/multiphysics problems based on the Interface Relaxation methodology. In this way a large problem is split in smaller sub-problems, which are solved independently exchanging information about their solution iteratively until the initial large problem is solved. Through the proposed application the users can define complex multiphysics problems, select the appropriate PDE solvers for the smaller sub-problems and IR method (ROB or GEO) for the interfaces and get the computed solution of the global problem.

The resources' allocation is dynamic and is based on the computational needs of each problem. The main benefits when using the proposed application are that it allocates the minimum possible resources, solves the problem in a close to minimum execution time, and the resources allocation is performed automatically in the background without the user's interference.

In the near future, we plan to implement a larger number of PDE solvers and IR methods, as well as to provide support for more complex geometries. These modifications will enable us experiment with model problems representing the dissemination of primary brain tumors (gliomas) and the saltwater intrusion into freshwater aquifers due to overpumping.

Related publications

