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Abstract. Multi-physics phenomena are quite complex and it is impossible to
solve them efficiently and accurately by facing them with a single complicated
model. They are usually modeled as multi-domain multi-physics Partial Differ-
ential Equation (PDE) problems, initially treated with Domain Decomposition
(DD) methods. Interface Relaxation (IR) methodology presented as an alterna-
tive way to overcome these problems facing most of the DD difficulties. A short
review on simulation of multiphysics problems is presented. Existing IR stud-
ies for Elliptic PDEs are discussed while a first version of this methodology is
proposed for parabolic multiphysics PDEs.

1 Introduction

Simulations of multiphysics phenomena is a very promising research area today [1]
and in the past [2]. Computing power is increased and is offered at any level of hard-
ware, from high speed multi-processors and clusters to multi-core GPUs. This offer
the opportunity for more accurate simulations in reasonable execution times. Also the
realization of computational environments [3–10] utilizing all available capabilities of
both hardware and software brings us a step closer to simulate real world problems with
efficiency and accuracy.
Domain Decomposition [11–17] methods are methods initially used to face such kind
of problems. Their main characteristic is that they first discretize the global problem
(even if it is already partitioned by its physics) and then decompose it at the linear alge-
bra level. Several techniques, mainly iteratively, are used to solve the set of the strongly
coupled systems of linear equations that arise.
Interface Relaxation (IR) methodology [18] is an alternative way to study such prob-
lems. IR methods study the global problem interpreting its own physics, in order to
realize and utilize all its properties. The resulting subproblems are derived either by
the original problem’s physics or by computational and parallelization issues. These
“small” problems are studied independently of each other and appropriate methods
(FEM, FD, etc.) are used for their solution. However, these subproblems are coupled
[19–21] on the common interfaces so as to satisfy the conditions resulting from the
global problem’s properties (e.g., continuity and smoothness of the solution of the
global problem, jumps in the derivatives etc.). Initial guesses are considered on the
interfaces and passed as boundary conditions to the “small” problems. These are solved
concurrently and the resulting approximations are used by an IR method to relax the
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value and/or the derivative to get better estimates of the solution on the interfaces. These
new estimates are passed again as boundary conditions to the small problems and the
procedure iterates until convergence is achieved.
When studying IR methods, one should consider issues from both mathematical anal-
ysis, computational complexity and software/hardware viewpoint [1]. Mathematical
analysis is often derived for model problems representatives of the original multiphysics
applications since it is not possible and practical to get analysis for the realistic prob-
lems. Software reuse is of great importance when implementing IR methods. A variety
of software packages for the solution of simple non-multiphysics problems exist but
they have to be combined under suitable software and hardware environments.

This work is organized as follows. Examples of simulations for multiphysics applica-
tions are presented in Section 2. Section 3 contains a description of IR methods used
for applications modeled with elliptic PDE and parabolic PDEs. Finally, in Section 4
conclude and propose further steps.

2 Simulations for multiphysics problems

A multiphysics problem is problem that consists of multiple parts ruled by various prin-
ciples and laws. These could be equilibrium or evolution principles following conser-
vation or constitutive laws. The components of the multiphysics problems are coupled
either through a system of PDEs on common and/or overlapping domains, or through
boundary conditions of interfaces (of lower dimension than the original problem) be-
tween adjacent domains. In the first class one could find problems like electricity and
magnetism with hydrodynamics, while the second class contains multiphysics prob-
lems as fluid-structure dynamics (aeroelasticity) or ocean-atmosphere dynamics (geo-
physics) etc. All multiphysics problems are mainly described in algebraic forms before
they are descritized and solved. The two most popular forms are the one for the coupled
equilibrium problem
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and the one for the coupled evolution problem (2)
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)T , the algorithms for the equilibrium prob-
lems (1) can be categorized in three classes as in Table 1. These are Jacobi, Gauss-Seidel
or Newton style. In the left class of algorithms each single PDE problem is solved for
its corresponding unknown using all other unknowns from the previous iteration. For
example, during the k iteration the first problem is solved for the first unknown uk+1
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while the second one is solved for the second unknown uk+1

2

using uk
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. Thus,
this scheme corresponds to the Jacobi iterative procedure for the solution of linear equa-
tion systems. One can expand this for more PDE problems, solving the i problem for
the ith unknown using the rest unknowns from the previous iteration. This scheme is
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Table 1. Algorithms for equilibrium problems.
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Given intial guess (u0
1, u

0
2)

for k=1,2,... (until convergence)

Solve for (uk+1
1 , u

k+1
2 ) Solve for (uk+1

1 , u

k+1
2 ) Solve for �u

F1(u
k+1
1 , u

k
2) = 0 F1(u

k+1
1 , u

k
2) = 0 J(uk)�u = �F (uk)

F2(u
k
1 , u

k+1
2 ) = 0 F2(u

k+1
1 , u

k+1
2 ) = 0 Update u

k+1 = u

k + �u

end for

fully parallelized.
The Gauss-Seidel algorithms work as the corresponding method for the linear systems.
Considering n coupled problems, the i problem is solved for the ui unknown using un-
knowns u

1

, u
2

, . . . , ui�1

just computed in this iteration, while the ones ui+1

, . . . , un

are used from the previous iteration. This procedure does not complain any parallelism
but usually converge faster than the Jacobi one.
Finally, the Newton algorithms are considered tightly coupled schemes, since the in-
volve terms of @Fi,

@uj
in the Jacobian matrix. They are used in both equilibrium and

evolution problems.

Table 2. Algorithms for evolution problems.

Given intial guess (u1(t0), u2(t0))
for n = 1, . . . , Nt

Proceed one timestep for u1 solving @tu1 = f1(u1, u2(tn�1)) at the n timestep (i.e., u1(tn))
Proceed one timestep for u2 solving @tu2 = f2(u1(tn), u2) at the n timestep (i.e., u2(tn))

end for

For the evolution type of multiphysics problems one can consider schemes as in
Table 2. This scheme is the simplest one could be used for parabolic multiphysics PDE
problems. Each subproblem can be faced with implicit or explicit methods, and nested
iterations for convergence purposes maybe used.

3 Interface Relaxation Methodology

IR methodology considers that all multidomain-multiphysics PDE problems consist of
many “single PDE on simple domain” subproblems. Also, considers that there are ex-
isting PDE solvers for these simple subproblems. Therefore, one could combine these
simple PDE solvers to solve the original composite problem. The procedure is iterative
as seen below is shown in [20]:
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1. Guess solution values (and derivatives if needed) on all sub-domain interfaces.
2. Solve all single PDEs exactly and independently on all the sub-domains with these

values as boundary conditions.
3. Compare and improve the values on all interfaces using a relaxer (discussed be-

low).
4. Return to Step 2 until satisfactory accuracy is achieved.

Relaxing on the interfaces varies form averaging the values of the adjacent subdomains
to applying more complicated operators in order the global solution to satisfy all nec-
essary conditions. This iteration scheme is defined at the mathematical-physical level
of the problem, hence its convergence brings forth questions that has to be studied with
mathematical analysis tools, beyond numerical analysis methods [19, 21]. The main ad-
vantages of the method are the following: i) it grants the accurate coupling of various
models both for PDEs and interfaces, ii) it supports the reuse of software that treat sin-
gle models, iii) it introduces a higher level parallelism in computations, iv) it is follows
the geometry and physical modeling of a composite PDE problem.

Considering second order elliptic PDE problems in two dimensions, IR methodol-
ogy can be written in the following way. The local PDEs problems are denoted by

Liui = fi in ⌦i for i = 1, . . . , p, (3)

assuming that ⌦i do not overlap. Also it is assumed that the interface conditions are
given in the implicit form
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where ⌘i,j denotes the normal direction on interface �i,j and J
1

, J
2

the jump quantities
associated with u or its derivative. We assume that Gi,j can be a function mapping on
the interface or even a functional. We also assume certain boundary conditions (not
shown here) and the existence of the solution of the PDE problems. Few IR methods
for elliptic problems are presented and studied in [18–21].

Parabolic multiphysics PDE problems could be treated with similar IR methods
depending on the PDE terms beside the one with the time derivative, e.g., reaction-
diffusion, advection-diffusion, etc. If the splitting is done operator-wise multiple algo-
rithms are derived combining algorithms presented in Tables 1 and 2. But if the splitting
is considered in the PDE domain (as in the elliptic case above), one could follow an it-
eration scheme like this:

1. Consider initial values (and derivatives if needed) on all sub-domain interfaces.

These values are computed by the initial condition of global problem.
2. For each timestep do as:

(a) Evolve all single PDEs exactly and independently on all the sub-domains with

the values above as boundary conditions along with the regular boundary con-

ditions of the subproblems. Solve for the each sub-solution at the next time-step.
(b) Combine values and derivatives of sub-solutions on the interfaces (as in elliptic

case) to be used as boundary values for the next time-step.IR method used

should force the conditions that should be satisfied (continuity, smoothness,

jumps etc.).
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3. Nested iteration might be needed depending on the PDE problems.

This scheme is only a proposition and needs further exploitation and study.

4 Conclusions

This paper presents a short review on the multi-domain multiphysics simulations from
an algorithmic viewpoint. IR methodology is described for elliptic PDE multi-physics
problems, while a slightly modified methodology is proposed for parabolic PDE multi-
domain problems. Studies of existing or new coupling schemes from operator and do-
main viewpoint, for particular kinds of parabolic equations are the considered our next
steps. It is clear that from applications, mathematics and computations viewpoint there
are many steps to go beyond in the next years for multi-physics applications.

Acknowledgments

The present research work has been co-financed by the European Union (European
Social Fund ESF) and Greek national funds through the Operational Program Educa-
tion and Lifelong Learning of the National Strategic Reference Framework (NSRF) -
Research Funding Program: THALIS. Investing in knowledge society through the Eu-
ropean Social Fund (MIS 379416).

References

1. Keyes, D., et. all, Multiphysics simulations: Challenges and Opportunities, Intr. J. of High
Performance Computing Applications, 27(4), 1–83, (2013)

2. Rice, J.R., Modeling with collaborating PDE solving modules. In 7th Int. Conf. Math. and
Comp. Modeling, 1989

3. Drashansky T.: An Agent-Based Approach to Building Multidisciplinary Problem Solving
Environments. PhD Thesis, Purdue University, Computer Science Department, (1996)

4. Rice, J.R., Tsompanopoulou, P., Vavalis, E.A.: SciAgents Tool: User’s Guide. Tech. Rpt. TR-
98-043, Dept. Computer Sciences, Purdue Univ., (1998)
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