
Efficient Solution of Large Sparse Linear Systems in

Modern Hardware

Athanasios Fevgas, Konstantis Daloukas, Panagiota Tsompanopoulou, and Panayiotis Bozanis
Department of Electrical & Computer Engineering

University of Thessaly

Volos, Greece

e-mails: {fevgas, kodalouk, yota, pbozanis}@inf.uth.gr

Abstract—The solution of large-scale sparse linear systems

arises in numerous scientific and engineering problems. Typical

examples involve study of many real world multi-physics problems

and the analysis of electric power systems. The latter involve key

functions such as contingency, power flow and state estimation

whose analysis amounts at solving linear systems with thousands

or millions of equations. As a result, efficient and accurate solution

of such systems is of paramount importance. The methods for

solving sparse systems are distinguished in two categories, direct

and iterative. Direct methods are robust but require large amounts

of memory, as the size of the problem grows. On the other hand,

iterative methods provide better performance but may exhibit

numerical problems. In addition, continuous advances in

computer hardware and computational infrastructures imposes

new challenges and opportunities. GPUs, multi-core CPUs, late

memory and storage technologies (flash and phase change

memories) introduce new capabilities to optimizing sparse solvers.

This work presents a comprehensive study of the performance of

some, state of the art, sparse direct and iterative solvers on modern

computer infrastructure and aims to identify the limits of each

method on different computing platforms. We evaluated two

direct solvers in different hardware configurations, examining

their strengths and weaknesses both in main memory (in-core) and

secondary memory (out-of-core) execution in a series of

representative matrices from multi-physics and electric grid

problems. Also, we provide a comparison with an iterative method,

utilizing a general purpose preconditioner, implemented both on a

GPU and a multi-core processor. Based on the evaluation results,

we observe that direct solvers can be as efficient as their iterative

counterparts if proper memory optimizations are applied. In

addition, we demonstrate that GPUs can be utilized as efficient

computational platforms for tackling the analysis of electric power

systems.

Keywords— smart grid; GPU; solid state NVM; SSD; multi-

physics; scientific computing; sparse matrixes; direct solvers;

iterative solvers

I. INTRODUCTION

Efficient solution of systems of linear equations with large
sparse matrices is fundamental in the computational sciences
since they study real world problems that involve such
computations. Simulation of multiphysics problems and
modern power systems are representative examples. Operation
functions of power systems like power flow, state estimation
and contingency analysis involve computationally demanding
sparse matrix calculations. Multiphysics and multidomain
simulation software (e.g. COMSOL, ANSYS, Code_Aster and
FEniCS) utilize either direct or iterative methods to solve the

underlying linear systems that arise when modeling a multi-
physics problem.

The majority of algorithms that are employed in the solution
of large-scale linear systems fall into two categories: direct and
iterative methods. Direct methods have been widely used owing
to their robustness for many types of problems. However, they
do not scale well with the size of the underlying problem and
they require large amounts of memory as the size of the problem
grows. Recently, out-of-core (OOC) algorithms that utilize
secondary storage have been designed and employed to
alleviate the memory requirements of direct solvers. These
algorithms are designed to efficiently fetch and access data
stored in secondary storage. On the other hand, iterative solvers
present a better alternative for the solution of large-scale sparse
linear systems as they have limited computational and memory
requirements. They involve only matrix-vector and vector inner
products which allow an extremely efficient scaling with the
increase of the corresponding linear system.

Another feature that have to be taken into account is the
degree of parallelism that a solution algorithm offers. Direct
solution algorithms contain limited parallelism, thus their
mapping onto contemporary parallel architectures does not
provide large benefits. On the contrary, iterative solvers
comprise highly parallel operations. As a result, their mapping
onto parallel architectures can greatly accelerate the solution of
the underlying system and make feasible the solution of very
large-scale problems.

Obviously, the performance of any solution method is tightly
coupled with the underlying computational platform. Thus, a
vast number of specialized algorithms have been developed that
are tailored to the underlying architecture in order to take better
advantage of its computational capabilities. In addition, more
sophisticated techniques, such as Out-Of-Core execution, have
a great potential if they are employed with state-of-the-art
storage hardware, such as flash storage technologies. In this
case, solution of very large-scale linear systems is feasible by
utilizing the secondary storage, with limited overhead as they
offer orders of magnitude greater read/write performance than
conventional hard disks. Based on these observations, in this
paper we present a quantitative performance study of some state-
of-the-art direct and iterative solvers in contemporary hardware
architectures. We focus on the solution of large-scale, sparse
linear systems that mainly arise from power systems simulation
or challenging multiphysics/multidomain problems. The rest of
the papers is organized as following: in section II a mathematical
background is provided along with a short description of the

problems and challenges concern power systems and
multiphysics simulations. Section III briefly describes emerging
technologies that influence of are going to influence. The linear
solvers were used in this study are presented in section IV. The
experiments and a discussion on the results are in section V and
at the end conclusions and future work are given in VI.

II. BACKGROUND

A. Sparse Linear Systems

The efficient solution of linear systems of equations of the
form, 𝐴𝑥 = 𝑏 is fundamental for a wide range of physical
problems. In several cases the coefficient matrix 𝐴 arising from
the solution of partial differential equations is large and sparse.
The solution vector 𝑥 can be conducted either with iterative or
direct methods. Direct methods are robust and predictable, they
do not experience numerical problems but the amount of
available main memory is a common constraint in large systems
[1][2]. On the other hand, iterative methods usually face
numerical problems and may not even converge [2]. In addition,
their performance depends on the existence of a sufficient
preconditioner for the specific problem.

Most direct sparse methods rely on Gaussian elimination and
factorize the coefficient matrix A to a product of a lower 𝐿 and
an upper 𝑈 triangular matrix (𝐴 = 𝐿𝑈). If 𝐴 is symmetric
positive definite, then the product is simplified to𝐴 = 𝐿𝐿𝑇
(Cholesky factorization). In general, direct solvers conduct the
solution of a sparse linear system in four phases: a) ordering, b)
analysis and symbolic factorization, c) numerical factorization,
and d) forward and backward substitution including iterative
refinement. In the ordering phase a permutation of 𝐴 is produced
in order to reduce fill-in during pivoting down to diagonal.
Symbolic factorization computes the non-zero pattern of the
factors and calculates the numbers of non-zeros in each row and
column as well. The non-zero pattern of the factors is utilized
for building the necessary data structures for the numerical
factorization and for the distribution of data and computations in
parallel implementations [3]. The numerical values of the factors
are computed at the numerical factorization phase. This is the
most time and memory consuming stage. It can be performed
using different techniques (e.g. left-looking, right-looking,
multifrontal, supernodal) based to access pattern of the entries
of 𝐴 [4]. Finally, the solution of the system is conducted solving
the triangular systems 𝐿𝑦 = 𝑏 (forward elimination) and 𝑈𝑥 =
𝑦 (backward substitution) using the stored factors. The factors
of 𝐴 are sparse but not as sparse as 𝐴 itself. The additional fill-
ins of the factors increases main memory requirements as the
size of the problem increases. This is deteriorated due to
parallelization on modern multi-core systems. To overcome this
issue some direct solvers incorporate out of core algorithms that
use secondary storage to retain data that do not fit in main
memory.

On the other hand, iterative methods belong to the general
category of relaxation methods. Starting with an initial solution
guess, they provide a partial solution in each step which
eventually converge to the desired solution, with a predefined
accuracy level. The most widely used are the iterative methods
based on Krylov subspaces. They form a basis of the sequence
of successive matrix powers times the initial residual, which is

called the Krylov sequence. Then, the approximations to the
solution are formed by minimizing the residual over the
subspace formed. Typical examples of Krylov-subspace
methods are the Conjugate Gradient (CG) for SPD systems and
the Generalized Minimal Residual Method (GMRES) for
general systems. The main characteristic of iterative methods is
their limited computational requirements, as they only comprise
matrix-vector and vector-vector operations. In addition, owing
to a recurrence property, they greatly reduce their memory
requirements. As a result, they are ideal candidate for the
solution of very large-scale linear systems. However, their
convergence rate is not known beforehand depends on the
condition number of the underlying system. In order to alleviate
this problem, the technique of preconditioning is utilized that
transforms the original system to a new one with more favorable
properties and accelerates convergence rate. The most widely-
used general purpose preconditioners are the one based on
incomplete factors, such as Incomplete Cholesky (IC),
Incomplete LU with no fill-ins (ILU0), and Incomplete LU with
threshold and pivoting (ILUTP) [1].

B. Power Systems

The production and distribution of electric power is
fundamental for human progress. The electric power is produced
in power plants and is transported to the consumers via an
extended power grid. Power grid has been kept up unchangeable
over the past decades. Smart grid, is a recent effort towards to
the upgrade of the power grid exploiting the advances in
information and communication technologies. The
modernization of power grid is tightly coupled with high
performance computing (HPC). Several key operation functions
of power grid like, state estimation, contingency analysis, power
flow and economic dispatch impose real time computation
constrains [5][6].

Power or load flow provides a steady state simulation of a
power system and it is essential for contingency analysis. A
power flow study computes the voltages and voltage angles in
each power bus by studying numerically the electric power flow.
According to [7] the 85% of computing time in a power flow
study is consumed to solving sparse linear systems. Several
recent works propose either direct [7] or iterative methods [8][9]
utilizing up to date hardware for power flow analysis.

State estimation aims to enhance the situational awareness of
a power system and is vital for its reliable operation. It provides
an estimate for the power system state utilizing measurements
derived by the SCADA system. However, the measured data are
unreliable [10] or even exposed to malicious attacks [11]. The
weighted least squares algorithm (WLS) is the most popular
method for absorbing bad measurements improving grid
stability and reliability. Both direct and iterative methods have
been utilized by WLS for solving large sparse linear systems in
each iteration of the state estimation algorithm [10].

Extensive failures in a power grid inflict significant
economic and social implications and require considerable
economic and human resources to be addressed [12].
Contingency analysis attempts to discover possible failures of a
power system utilizing measurements from SCADA. Alarms
raised by contingency analysis enable grid operators to carry out
preventive and corrective control actions [13]. Each contingency

case can be considered as a power flow run [5] and many cases
can run in parallel [5][13].

Power grid applications involve highly demanding
computational problems derived from complex mathematical
models. Thus, the efficient solution of large sparse linear
systems is critical for these applications.

C. Multiphisycs

The term multiphysics concerns simulations of multiple
physical phenomena that interact among them. They are of great
importance for sciences and engineering as enable scientists and
engineers to enhance their understanding on a physical model.
From mathematics perspective real world physical phenomena
are quite complicated to be studied with a single model.
Therefore, they are modeled as multidomain and multiphysics
problems of Partial Deferential Equations (PDEs). Domain
Decomposition, Schwarz Splitting and Interface Relaxation
methods have been utilized to treat such problems so far.
Multiphysics simulation software involve several components
like gradient optimizers, wavelets, multidimensional FFT/IFFT,
sparse and dense linear solvers, etc.

The solving stage of multiphysics simulations involves the
solution of sparse linear systems using either direct or iterative
methods. Direct methods are able to solve any system arise from
Finite Element modeling while iterative ones usually require
more customization. COMSOL is a representative commercial
multiphysics simulation software that exploits MUMPS,
PARDISO and SPOOLES as direct solvers. MOOSE is an open
source multiphysics framework that relies on PetSc toolkit.
PetSc interfaces several direct (e.g. Matlab, PASTIX, MUMPS,
SuperLU, SuiteSparse) and iterative solvers.

III. MODERN HARDWARE FOR HIGH PERFORMANCE

COMPUTATIONS

In the recent years, flash memory is widely utilized storage
medium. Solid state disks (SSD) based on flash memories lack
of mechanical and moving parts, provide low power
consumption, and high random read/write performance.
Increased reliability and decreased cost make them the storage
medium of choice. The development of external memory
algorithms for solving systems with large matrices was a
popular research topic in the near past. The performance issues
due to the bandwidth and latency of magnetic disks were
addressed by utilizing clusters with distributed memory and
high bandwidth interconnections, however at high cost.
Nowadays, flash storage presents new opportunities for out-of-
core computing. The performance of enterprise flash motivated
authors of [14] to investigate the out-of-core sparse matrix
vector multiplication (SpMV) on a small SSD test-bed cluster.
In our previous work [15] we show that the performance of
OOC direct solvers can be significantly benefited from flash
storage compared to traditional magnetic disks.

Another emerging technology for solid state storage is Phase
Change Memory (PCM). Compared to flash, PCM provides
orders of magnitudes better read and write performance, better
endurance and lower power consumption. It is byte addressable
and does not require an erase operation before rewritten (i.e.
supports in-place updates). There are two main approaches for
using PCM in the memory hierarchy: the first proposes its

utilization as secondary storage [16][17][18] and the other as
non-volatile main memory alongside with DRAM [19][20].
Experimental results from early PCM based SSD prototypes
[16][17][18] show that are already competitive to commercial
enterprise level flash devices. Upcoming memory technologies
like memristor (ReRam) and STT-RAM are expected to provide
even better performance [21].

Emerging parallel architectures like general purpose
graphics processing units (GPGPUs), coprocessors/accelerators,
even high-end x86 multicore processors are of special interest
for the solution of sparse linear systems. Several studies have
been presented that evaluate the utilization of modern processing
subsystems for sparse matrix computations [22][23]. NVidia’s
late, Kepler GPU architecture provides high level of thread
parallelism and can achieve 1.66Tflops in a single GPU
configuration (K40 model). Its architecture is based in SMX
multiprocessor with 192 single precision CUDA cores and 64
double precision units per multiprocessor. Moreover it
incorporates up to 12GB of memory. Intel’s Xeon phi
coprocessor with 1.2Tflops offers high computational
performance utilizing up to 61 cores (244 hardware threads) and
16GB of memory. Intel Xeon latest multicore processors
incorporate up to 18 cores and are capable of more than a half
Teraflop per socket.

Upcoming hardware architectures like disaggregated server
rack are going revolutionize high performance computations.
Disaggregated rack architecture proposes the replacement of the
traditional rack as a set of self-contained machines, to a pool of
CPU, memory storage and network resources connected through
a high-bandwidth and low-latency network [24][25][26]. This
approach enables the dynamic construction of computing
systems by allocating, each time, the required resources from
these pools, depending to the workload demands [26].

IV. EXPIREMENTS

A. Sparse Solver Libraries

In order to evaluate the performance of direct and iterative
solvers in the solution of large-scale sparse linear systems
arising from electrical grid simulations and
multiphysic/multidomain problems, we utilized four typical
representative and state-of-the-art direct and iterative solvers.
We employed the Intel MKL Pardiso and the INRIA PASTIX
as our direct solvers and the GMRES and PCG iterative solvers
from the PARALUTION library [27].

PARDISO [28] is a shared memory multiprocessing parallel
direct solver for large sparse symmetric and unsymmetric linear
systems. Intel MKL provides a version of PARDISO with out-
of-core functionality exploiting external memory to retain
matrix factors. Specifically, Intel MKL 11.1.2 is employed and
PARDISO is set to use a parallel (OpenMP) version of Metis
[29] for ordering. PASTIX [30] is a high performance parallel
direct solver for sparse linear systems. It relies on both POSIX
threads (within a node) and MPI (within different nodes) for
parallelization. PASTIX can, also, exploit secondary storage to
preserve matrix factors, reducing the required amount of main
memory for the solution of large systems. We used PASTIX
version 5.1.4 along with SCOTCH (ver. 6.0.4) for ordering and
OpenBLAS (ver. 0.2.14) in our experiments.

Regarding the iterative solvers, we utilized PARALUTION,
a sparse linear algebra library focusing on exploring fine-grained
parallelism on modern processors and accelerators including
multi/many-core CPU and GPU platforms. It provides a large
number of iterative solvers and various preconditioners, ranging
from general-purpose to more sophisticated. We have employed
the Preconditioner Conjugate Gradients (PCG) and the
Generalized Minimum Residuals (GMRES) methods as the
iterative solvers in our experiments, while we have chosen the
ILUTP preconditioner mainly due to its robustness. The PCG
method is employed for the solution of SPD systems while the
GMRES method for systems where the system matrix has no
special properties.

TABLE I. TEST MATRICES AND THEIR CHARACTERISTICS

B. Expiremental Methodology

Our evaluation focuses on the performance of each
direct/iterative solver in terms of execution time and memory
requirements. We aim to highlight possible strengths and
weaknesses of each method (direct/iterative) and identify their
performance limits in various hardware platforms. Thus, we

utilize three different types of hardware: a) a flash SSD equipped
WorkStation (WS1), b) a GPU enabled WorkStation (WS2) and
c) a High Performance multicore Server (HPS). The SSD
workstation is a DELL Precision T3500 workstation equipped
with 24GB of DDR3 RAM and a 4-core Intel Xeon W3550
3.06GHz CPU. It is configured with an Intel 520 SSD 240GB
(connected to SATA-III interface) as booting device and an
OCZ Revodrive 350 PCIe 480GB as additional storage device
for the experiments. The GPU workstation is a DELL T5500
with 24GB DDR3 RAM, a 6-core Intel Xeon E5645 2,4GHz
CPU and a Tesla C2075 GPU. Last, the high performance server
is a HP BL460c Gen 9 blade server with 64GB DDR4 RAM and
2 Intel Xeon CPUs E5-2695 v3 at 2.30GHz with 14 cores each.
Both SSD workstation and 28-core server run 64-bit Centos 6.6
(kernel 2.6.32-504.12.2) while GPU workstation runs 64-bit
Ubuntu 14.10 (kernel 3.16.0-31-generic).

Real, symmetric and unsymmetric linear systems of
equations are examined. Test data M1-M8 were derived from
Sparse Matrix Collection of the University of Florida [31].
Coefficient matrices M9-M11 arising from the tensor product
discretization of linear parabolic multi domain problems by the
Discontinuous Hermite Collocation coupled with Diagonally
Implicit Runge-Kutta method [32][33]. A detailed description of
the test sets is given in Table 1.

Execution time and main memory requirements were
measured for each case. PASTIX and PARDISO solvers were
evaluated using the SSD enabled workstation and the 28-core
server. An effort to exploit Tesla GPU along with CHOLMOD
direct solver from SuiteSparse package gave results only for M1
and M9 systems due to small GPU memory size. Therefore, we
present results only from the two other hardware platforms
(WS1, HPS). On the other hand, the iterative solvers from
PARALUTION were evaluated in all hardware platforms.
Regarding the OOC algorithms, their performance depends on

ID NAME TYPE SIZE Non-Zeros

M1 Inline_1 R, S, PD 503,712 18,660,027

M2 Aster_perf-11a R, S, I 853,632 71,098,992

M3 Audikw_1 R, S, I 943,695 39,297,771

M4 Nice20mc R, S, I 715,923 28,066,527

M5 Flan_1565 R, S, PD 1,564,794 114,165,372

M6 StocF_1465 R, S, PD 1,465,137 21,005,389

M7 kkt_power R,S 2,063,494 12,771,361

M8 Atmosmodl R, U, I 1,489,752 10,319,760

M9 StepDHC_DIRK_1 R, U 409,600 6,533,136

M10 StepDHC_DIRK_2 R, U 1,638,400 26,173,456

M11 StepDHC_DIRK_3 R, U 6,553,600 104,775,696

TABLE II. DIRECT SOLVERS RESULTS

 PASTIX PARDISO

 WS1 (4-CORE, SSD) HPS (28-CORE) WS1 (4-CORE, SSD) HPS (28-CORE)

MATRIX

IC

exec.

time

(sec)

IC

mem.

(GB)

OOC

exec.

time

(sec)

OOC

mem.

(GB)

IC exec.

time

(sec)

IC

mem.

(GB)

IC exec.

time

(sec)

IC

mem.

(GB)

OOC

exec.

time

(sec)

OOC

mem.

(GB)

IC

exec.

time

(sec)

IC

mem.

(GB)

M1 16.15 1.99 16.99 1.84 9.57 2.08 10.44 1.81 15.03 0.67 4.30 2.27

M2 406.31 15.50 1219.94 3.91 73.20 16.10 347.35 14.73 408.87 2.31 44.97 17.02

M3 227.76 10.40 701.62 3.91 44.60 11.00 216.82 10.56 289.11 1.51 33.11 12.60

M4 204.23 9.19 480.75 3.90 40.92 9.59 178.13 9.06 225.24 1.08 24.54 10.82

M5 172.63 13.50 667.04 3.92 40.76 13.80 149.08 12.75 202.28 2.17 23.79 14.10

M6 200.39 9.84 358.22 3.90 52.29 10.10 195.94 9.52 241.94 0.95 29.06 10.98

M7 261.87 5.61 648.03 3.91 88.14 5.99 99.49 3.82 202.20 1.30 18.55 6.09

M8 512.03 16.80 1427.50 3.95 125.06 17.10 503.39 15.40 559.38 1.22 65.00 17.06

M9 12.42 1.56 12.70 1.48 8.09 1.63 7.26 1.33 15.85 0.44 2.67 1.70

M10 69.09 7.10 167.05 3.97 36.66 7.38 42.88 6.05 88.40 1.76 11.93 7.66

M11

Not

enough
memory

-
Not

enough
memory

-
 216.95 32.8

Not

enough
memory

-
Not

enough
memory

-
74.87 34.07

the available main memory. Thus, we restricted the maximum
amount of memory that OOC algorithms can use to 4GB in order
to conduct more realistic experiments.

C. Results

Table II summarizes the results for the direct solvers. The in-
core execution utilizing the 28 cores of HPS server is 1.5 to 5.5
times faster than PASTIX and 2.4 to 7.7 times faster than
PARDISO, compared to the in-core execution in the 4 cores of
WS1. The IC runs in the 28-core platform consume slightly
more main memory than the runs in the 4-core platform. On the
other hand, the out-of-core execution of PASTIX is up to 3.2
times slower but requires up to 4.2 time less memory than the
in-core execution of WS1. Similarly, the out-of-core solution
algorithm of PARDISO is up to 2.2 times slower than the
corresponding in-core but consumes up to 12.6 times less
memory. PARDISO achieves better performance and has less
memory requirements compared to PASTIX in all cases.
Particularly, the IC execution in the 28-core HPS server is faster
than PARDISO by a factor ranging from 1.3 to 4.7 and the OOC
by a factor ranging from 1.1 to 3.2 respectively.

Table III presents the experimental results for the iterative
solution methods. Comparing the execution time between the
multi-core platforms, we can observe that in 4 cases the
utilization of more cores leads to increased execution times. This
can mainly be attributed to the limited parallelism found in the
backward and forward substitution phases for the specific
systems. For the other cases, execution on the 28-core platform
results to a speedup between 1.1X and 1.9X. Iterative solvers
can greatly benefit from the vast amount of computational
resources found in modern GPUs. As we can observe, execution
on the GPU outperforms the execution on the 4-core and the 28-
core platforms by a factor ranging from 3.3 up to 13.8 and from
3.2 up to 26.1 respectively (with the most values being between
3 and 10).

Furthermore, iterative methods outperform direct ones in the
majority of cases for the 4-core WS1. This is not the case for the
28-core platform, where direct methods outperform iterative
algorithms in 5 cases, mainly for systems where the system
matrix exhibits a low sparsity ratio. Utilizing the GPU platform
allows iterative solvers to achieve the best performance in all
cases that was able to run.

Another important aspect of a linear solution algorithm is its
memory requirements. Direct solvers exhibit increased memory
demands as the size of the linear system increases. Thus, linear
system M11 was solved only on the HPS platform that
comprises a large amount of main memory. Even OOC
execution failed due to the 4GB limit that we have set. We
increased the available amount of memory to 8GBs and
PARDISO was able to solve M11 in 615sec. On the other
PASTIX was not possible to provide a solution even with 20GB
of RAM available to the OOC solver. It is remarkable that
PARDISO is almost twice faster than PARALUTION in the 28
core execution.

V. CONCLUSIONS

The efficient solution of sparse linear systems of equations
is of great importance for a wide range of scientific and
engineering problems, including power systems and multi-
physics simulations. In this paper, we presented a quantitative
analysis of the performance of state-of-the-art direct and
iterative linear system solution algorithms on modern hardware
architectures, including multicore CPUs, GPU-based platforms
and flash-based SSDs. Experimental evaluation on a series of
representative large-scale linear systems demonstrated that
iterative methods outperform direct ones in most cases and are
capable to exploit GPUs’ processing power more efficiently due
to smaller memory requirements. Moreover, results unveiled
that flash SSDs and OOC algorithms can be a better alternative
and can alleviate the increased memory requirements of the in-
core solution algorithms. However, the efficiency of a method

TABLE III. ITERATIVE SOLVERS RESULTS

 PARALUTION

 All cases WS1 (4-CORE, SSD) HPS (28-core) WS2 (GPU) All cases

MATRIX Iterations Exec. time (sec) Exec. time (sec) Exec. time (sec) Mem. (GB)

M1 13 0.91 5.20 0.19 1.15

M2 65 12.73 8.76 2.68 2.42

M3 17 2.67 8.75 0.44 2.2

M4 34 3.82 3.23 0.89 1.66

M5 37 10.87 8.71 2.03 3.6

M6 33 0.46 0.74 0.11 2.62

M7 77 28.81 29.89 8.66 3.23

M8 52 0.25 0.14 0.04 3.52

M9 53 16.79 11.34 1.21 1.03

M10 64 18.98 11.75 2.90 4.04

M11
162 254.63 135.96

Not enough

memory
13.01

depends, in many cases, on the characteristics of the coefficient
matrix itself. Thus, the apt selection of the appropriate method
is needed.

Relying to the above we believe that contribution of modern
hardware is capable to lead to important savings of
computational time in numerical linear algebra, but further
research is needed in order to exploit its full advantages. Our
future work aims to further improve the efficiency of out-of-core
algorithms in non-volatile memories.

ACKNOWLEDGMENT

The present research work has been partially co-financed by
the European Union (European Social Fund ESF) and Greek
national funds through the Operational Program Education and
Lifelong Learning of the National Strategic Reference
Framework (NSRF) – Research Funding Program: THALIS.
Investing in knowledge society through the European Social
Fund (MIS 379416).

REFERENCES

[1] Y. Saad, “Iterative methods for sparse linear systems”, Siam, 2003.

[2] V. Rotkin, Vladimir, S. Toledo, “The design and implementation of a new
out-of-core sparse Cholesky factorization method” ACM Transactions on
Mathematical Software (TOMS) vol. 30, no 1, pp. 19-46, 2004.

[3] A. Gupta, “Parallel sparse direct methods: A short tutorial”, IBM
Research Report, 2010.

[4] J. Hogg, J. Scott, “New Parallel Sparse Direct Solvers for Multicore
Architectures”, Algorithms vol. 6, no 4, pp. 702-725, 2013.

[5] Z. Huang, J. Nieplocha, “Transforming power grid operations via high
performance computing”, Power and Energy Society General Meeting-
Conversion and Delivery of Electrical Energy in the 21st Century, pp. 1-
8, IEEE, 2008.

[6] R. Amgai, J. Shi, S. Abdelwahed, Y. Fu, “Research trends in high
performance computing application on large scale power system
operation”, In Grand Challenges in Modeling & Simulation. 2012.

[7] T. Chagnon, J. Johnson, P. Vachranukunkiet, P. Nagvajara, C. Nwankpa,
“Sparse lu decomposition using fpga”, In Proc. of the 9th Int. Workshop
on State-of-the-Art in Scientific and Parallel Computing, Trondeim,
Norway. 2008.

[8] R. Idema, D. J. Lahaye, C. Vuik, L. van der Sluis, “Scalable Newton-
Krylov solver for very large power flow problems”, Power Systems, IEEE
Transactions on, 27(1), pp. 390-396, 2012.

[9] X. Li, F. Li, “GPU-based power flow analysis with Chebyshev
preconditioner and conjugate gradient method”, Electric Power Systems
Research, 116, pp. 87-93, 2014.

[10] J. Neplocha, D. Chavaria-Miranda, V. Tipparaju, Z. Huang, A. Marquez,
“A parallel WLS state estimator on shared memory computers", Int. Conf.
in Power Engineering, IPEC 2007, pp.395-400, 2007.

[11] Y. Liu, P. Ning,P., M. K. Reiter, “False data injection attacks against state
estimation in electric power grids”, ACM Transactions on Information
and System Security (TISSEC), vol. 14, no 1, 2011.

[12] M. Alamaniotis, G. Rong, L. H. Tsoukalas, “Towards an energy internet:
A game-theoretic approach to price-directed energy utilization,” In
Energy-Efficient Computing and Networking, pp. 3-11. Springer Berlin
Heidelberg, 2011.

[13] G. A. Ezhilarasi, K. S. Swarup, “Parallel contingency analysis in a high
performance computing environment” In proc. Int. Conf. on Power
Systems, 2009, ICPS'09, pp. 1-6. IEEE, 2009.

[14] Z. Zheng, E. Saule, H.M. Aktulga, C. Yang, E.G. Ng, P. Maris, J.P. Vary,
U.V. Catalyurek, “An out-of-core dataflow middleware to reduce the cost

of large scale iterative solvers”, In Parallel Processing Workshops
(ICPPW), pp. 71-80, 2012.

[15] A. Fevgas, P. Tsompanopoulou, P. Bozanis, “Exploring the Performance
of Out-of-Core Linear Algebra Algorithms in Flash based Storage”, 6th
International Conference on Numerical Analysis (NumAn 2014), Chania,
Crete, Greece, pp. 97-102, 2014. (http://lib.amcl.tuc.gr/handle/triton/36)

[16] A. Akel, A. M. Caulfield, T. I. Mollov, R. K. Gupta, S. Swanson. “Onyx:
a protoype phase change memory storage array”, In Proc. of the 3rd
USENIX conference on Hot topics in storage and file systems, pp. 2-2,
2011.

[17] M. Athanassoulis, B. Bhattacharjee, M. Canim, A. K. Ross. “Path
processing using solid state storage”, In Proc. of the 3rd Int. Workshop on
Accelerating Data Management Systems Using Modern Processor and
Storage Architectures (ADMS 2012), no. EPFL-CONF-180073. 2012.

[18] I. Koltsidas, P. Mueller, R. Pletka, T. Weigold, E. Eleftheriou, M.
Varsamou, A. Ntalla, E. Bougioukou, A. Palli, T. Antonakopoulos,
“PSS: A prototype storage subsystem based on PCM",
5th Non-Volatile Memories Workshop (NVMW 2014).

[19] S. Chen, Shimin, Q. Jin, “Persistent B+-trees in non-volatile main
memory." Proceedings of the VLDB Endowment 8, no. 7, pp. 786-797,
2015.

[20] W. Hu, G. Li, J. Ni, D. Sun, K. L. Tan, “Bp-Tree: A Predictive B+-Tree
for Reducing Writes on Phase Change Memory”, IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 10, pp. 2368-2381, 2014.

[21] S. Swanson, A. M. Caulfield, “Refactor, reduce, recycle: Restructuring
the i/o stack for the future of storage”, Computer vol. 8, pp. 52-59, 2013.

[22] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, A. R. Bishop, “A unified
sparse matrix data format for efficient general sparse matrix-vector
multiplication on modern processors with wide SIMD units”, SIAM
Journal on Scientific Computing, vol. 36, no. 5, pp. C401-C423, 2014.

[23] E. Saule, K. Kaya, Ü. V. Çatalyürek, “Performance evaluation of sparse
matrix multiplication kernels on intel xeon phi”, In Parallel Processing
and Applied Mathematics, Springer Berlin Heidelberg, pp. 559-570,
2014.

[24] C. C. Tu, “Memory-Based Rack Area Networking”, PhD diss., Stony
Brook University, 2014.

[25] C. S. Li, H. Franke, C. Parris, V. Chang, “Disaggregated Architecture for
At Scale Computing”, In, Emerging Software as a Service and Analytics
2015 Workshop (ESaaSA 2015), in conjunction with CLOSER 2015,
Lisbon, 2015.

[26] B. Abali, R. J. Eickemeyer, H. Franke, C. S. Li, M. A. Taubenblatt,
“Disaggregated and optically interconnected memory: when will it be cost
effective?”, arXiv preprint arXiv:1503.01416, 2015.

[27] D. Lurkarski. PARALUTION project, http://www.paralution.com

[28] O. Schenk, “Scalable parallel sparse lu factorization methods on shared
memory multiprocessors”, PhD Thesis, 2000.

[29] G. Karypis, V. Kumar, “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs”, SIAM Journal on Scientific Computing,
vol 20, no. 1, pp. 359-392, 1998.

[30] P. Hénon, P. Ramet, J. Roman, “PASTIX: a high-performance parallel
direct solver for sparse symmetric positive definite systems”, Parallel
Computing vol. 28, no. 2, pp. 301-321, 2002..

[31] The University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices (last accessed
2/25/2015).

[32] I.E. Athanasakis, E.P. Papadopoulou and Y.G. Saridakis, “Tensor Product
Discontinuous Hermite Collocation for linear & nonlinear Parabolic
Multidomain Problems in 2+1 dimensions”, (work in progress - personal
communication).

[33] I.E. Athanasakis, E.P. Papadopoulou and Y.G. Saridakis, “Discontinuous
Hermite Collocation and diagonally implicit RK3 for a brain tumour
invasion model.” Proceedings of WCE 2013 Vol I, IAENG, pp. 241-246,
2013.

http://lib.amcl.tuc.gr/handle/triton/36
http://www.paralution.com/
http://www.cise.ufl.edu/research/sparse/matrices

