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Abstract—The solution of large-scale sparse linear systems 

arises in numerous scientific and engineering problems. Typical 

examples involve study of many real world multi-physics problems 

and the analysis of electric power systems. The latter involve key 

functions such as contingency, power flow and state estimation 

whose analysis amounts at solving linear systems with thousands 

or millions of equations. As a result, efficient and accurate solution 

of such systems is of paramount importance. The methods for 

solving sparse systems are distinguished in two categories, direct 

and iterative. Direct methods are robust but require large amounts 

of memory, as the size of the problem grows. On the other hand, 

iterative methods provide better performance but may exhibit 

numerical problems. In addition, continuous advances in 

computer hardware and computational infrastructures imposes 

new challenges and opportunities. GPUs, multi-core CPUs, late 

memory and storage technologies (flash and phase change 

memories) introduce new capabilities to optimizing sparse solvers. 

This work presents a comprehensive study of the performance of 

some, state of the art, sparse direct and iterative solvers on modern 

computer infrastructure and aims to identify the limits of each 

method on different computing platforms. We evaluated two 

direct solvers in different hardware configurations, examining 

their strengths and weaknesses both in main memory (in-core) and 

secondary memory (out-of-core) execution in a series of 

representative matrices from multi-physics and electric grid 

problems. Also, we provide a comparison with an iterative method, 

utilizing a general purpose preconditioner, implemented both on a 

GPU and a multi-core processor. Based on the evaluation results, 

we observe that direct solvers can be as efficient as their iterative 

counterparts if proper memory optimizations are applied. In 

addition, we demonstrate that GPUs can be utilized as efficient 

computational platforms for tackling the analysis of electric power 

systems. 

Keywords— smart grid; GPU; solid state NVM; SSD; multi-

physics; scientific computing; sparse matrixes; direct solvers; 

iterative solvers 

I.  INTRODUCTION 

Efficient solution of systems of linear equations with large 
sparse matrices is fundamental in the computational sciences 
since they study real world problems that involve such 
computations. Simulation of multiphysics problems and 
modern power systems are representative examples. Operation 
functions of power systems like power flow, state estimation 
and contingency analysis involve computationally demanding 
sparse matrix calculations. Multiphysics and multidomain 
simulation software (e.g. COMSOL, ANSYS, Code_Aster and 
FEniCS) utilize either direct or iterative methods to solve the 

underlying linear systems that arise when modeling a multi-
physics problem. 

The majority of algorithms that are employed in the solution 
of large-scale linear systems fall into two categories: direct and 
iterative methods. Direct methods have been widely used owing 
to their robustness for many types of problems. However, they 
do not scale well with the size of the underlying problem and 
they require large amounts of memory as the size of the problem 
grows. Recently, out-of-core (OOC) algorithms that utilize 
secondary storage have been designed and employed to 
alleviate the memory requirements of direct solvers. These 
algorithms are designed to efficiently fetch and access data 
stored in secondary storage. On the other hand, iterative solvers 
present a better alternative for the solution of large-scale sparse 
linear systems as they have limited computational and memory 
requirements. They involve only matrix-vector and vector inner 
products which allow an extremely efficient scaling with the 
increase of the corresponding linear system.  

Another feature that have to be taken into account is the 
degree of parallelism that a solution algorithm offers. Direct 
solution algorithms contain limited parallelism, thus their 
mapping onto contemporary parallel architectures does not 
provide large benefits. On the contrary, iterative solvers 
comprise highly parallel operations. As a result, their mapping 
onto parallel architectures can greatly accelerate the solution of 
the underlying system and make feasible the solution of very 
large-scale problems. 

Obviously, the performance of any solution method is tightly 
coupled with the underlying computational platform. Thus, a 
vast number of specialized algorithms have been developed that 
are tailored to the underlying architecture in order to take better 
advantage of its computational capabilities. In addition, more 
sophisticated techniques, such as Out-Of-Core execution, have 
a great potential if they are employed with state-of-the-art 
storage hardware, such as flash storage technologies. In this 
case, solution of very large-scale linear systems is feasible by 
utilizing the secondary storage, with limited overhead as they 
offer orders of magnitude greater read/write performance than 
conventional hard disks. Based on these observations, in this 
paper we present a quantitative performance study of some state-
of-the-art direct and iterative solvers in contemporary hardware 
architectures. We focus on the solution of large-scale, sparse 
linear systems that mainly arise from power systems simulation 
or challenging multiphysics/multidomain problems. The rest of 
the papers is organized as following: in section II a mathematical 
background is provided along with a short description of the 



problems and challenges concern power systems and 
multiphysics simulations. Section III briefly describes emerging 
technologies that influence of are going to influence. The linear 
solvers were used in this study are presented in section IV. The 
experiments and a discussion on the results are in section V and 
at the end conclusions and future work are given in VI. 

II. BACKGROUND 

A. Sparse Linear Systems 

The efficient solution of linear systems of equations of the 
form, 𝐴𝑥 = 𝑏 is fundamental for a wide range of physical 
problems. In several cases the coefficient matrix 𝐴 arising from 
the solution of partial differential equations is large and sparse. 
The solution vector 𝑥 can be conducted either with iterative or 
direct methods. Direct methods are robust and predictable, they 
do not experience numerical problems but the amount of 
available main memory is a common constraint in large systems 
[1][2]. On the other hand, iterative methods usually face 
numerical problems and may not even converge [2]. In addition, 
their performance depends on the existence of a sufficient 
preconditioner for the specific problem.  

Most direct sparse methods rely on Gaussian elimination and 
factorize the coefficient matrix A to a product of a lower 𝐿 and 
an upper 𝑈 triangular matrix (𝐴 = 𝐿𝑈). If 𝐴 is symmetric 
positive definite, then the product is simplified to𝐴 = 𝐿𝐿𝑇  
(Cholesky factorization). In general, direct solvers conduct the 
solution of a sparse linear system in four phases: a) ordering, b) 
analysis and symbolic factorization, c) numerical factorization, 
and d) forward and backward substitution including iterative 
refinement. In the ordering phase a permutation of 𝐴 is produced 
in order to reduce fill-in during pivoting down to diagonal. 
Symbolic factorization computes the non-zero pattern of the 
factors and calculates the numbers of non-zeros in each row and 
column as well. The non-zero pattern of the factors is utilized 
for building the necessary data structures for the numerical 
factorization and for the distribution of data and computations in 
parallel implementations [3]. The numerical values of the factors 
are computed at the numerical factorization phase. This is the 
most time and memory consuming stage. It can be performed 
using different techniques (e.g. left-looking, right-looking, 
multifrontal, supernodal) based to access pattern of the entries 
of 𝐴 [4]. Finally, the solution of the system is conducted solving 
the triangular systems 𝐿𝑦 = 𝑏 (forward elimination) and 𝑈𝑥 =
𝑦 (backward substitution) using the stored factors. The factors 
of 𝐴 are sparse but not as sparse as 𝐴 itself. The additional fill-
ins of the factors increases main memory requirements as the 
size of the problem increases. This is deteriorated due to 
parallelization on modern multi-core systems. To overcome this 
issue some direct solvers incorporate out of core algorithms that 
use secondary storage to retain data that do not fit in main 
memory.  

On the other hand, iterative methods belong to the general 
category of relaxation methods. Starting with an initial solution 
guess, they provide a partial solution in each step which 
eventually converge to the desired solution, with a predefined 
accuracy level. The most widely used are the iterative methods 
based on Krylov subspaces. They form a basis of the sequence 
of successive matrix powers times the initial residual, which is 

called the Krylov sequence. Then, the approximations to the 
solution are formed by minimizing the residual over the 
subspace formed. Typical examples of Krylov-subspace 
methods are the Conjugate Gradient (CG) for SPD systems and 
the Generalized Minimal Residual Method (GMRES) for 
general systems. The main characteristic of iterative methods is 
their limited computational requirements, as they only comprise 
matrix-vector and vector-vector operations. In addition, owing 
to a recurrence property, they greatly reduce their memory 
requirements. As a result, they are ideal candidate for the 
solution of very large-scale linear systems. However, their 
convergence rate is not known beforehand depends on the 
condition number of the underlying system. In order to alleviate 
this problem, the technique of preconditioning is utilized that 
transforms the original system to a new one with more favorable 
properties and accelerates convergence rate. The most widely-
used general purpose preconditioners are the one based on 
incomplete factors, such as Incomplete Cholesky (IC), 
Incomplete LU with no fill-ins (ILU0), and Incomplete LU with 
threshold and pivoting (ILUTP) [1].  

B. Power Systems 

The production and distribution of electric power is 
fundamental for human progress. The electric power is produced 
in power plants and is transported to the consumers via an 
extended power grid. Power grid has been kept up unchangeable 
over the past decades. Smart grid, is a recent effort towards to 
the upgrade of the power grid exploiting the advances in 
information and communication technologies. The 
modernization of power grid is tightly coupled with high 
performance computing (HPC). Several key operation functions 
of power grid like, state estimation, contingency analysis, power 
flow and economic dispatch impose real time computation 
constrains [5][6].  

Power or load flow provides a steady state simulation of a 
power system and it is essential for contingency analysis. A 
power flow study computes the voltages and voltage angles in 
each power bus by studying numerically the electric power flow. 
According to [7] the 85% of computing time in a power flow 
study is consumed to solving sparse linear systems. Several 
recent works propose either direct [7] or iterative methods [8][9] 
utilizing up to date hardware for power flow analysis. 

State estimation aims to enhance the situational awareness of 
a power system and is vital for its reliable operation. It provides 
an estimate for the power system state utilizing measurements 
derived by the SCADA system. However, the measured data are 
unreliable [10] or even exposed to malicious attacks [11]. The 
weighted least squares algorithm (WLS) is the most popular 
method for absorbing bad measurements improving grid 
stability and reliability. Both direct and iterative methods have 
been utilized by WLS for solving large sparse linear systems in 
each iteration of the state estimation algorithm [10]. 

Extensive failures in a power grid inflict significant 
economic and social implications and require considerable 
economic and human resources to be addressed [12]. 
Contingency analysis attempts to discover possible failures of a 
power system utilizing measurements from SCADA. Alarms 
raised by contingency analysis enable grid operators to carry out 
preventive and corrective control actions [13]. Each contingency 



case can be considered as a power flow run [5] and many cases 
can run in parallel [5][13].           

Power grid applications involve highly demanding 
computational problems derived from complex mathematical 
models. Thus, the efficient solution of large sparse linear 
systems is critical for these applications. 

C. Multiphisycs 

The term multiphysics concerns simulations of multiple 
physical phenomena that interact among them. They are of great 
importance for sciences and engineering as enable scientists and 
engineers to enhance their understanding on a physical model. 
From mathematics perspective real world physical phenomena 
are quite complicated to be studied with a single model. 
Therefore, they are modeled as multidomain and multiphysics 
problems of Partial Deferential Equations (PDEs). Domain 
Decomposition, Schwarz Splitting and Interface Relaxation 
methods have been utilized to treat such problems so far. 
Multiphysics simulation software involve several components 
like gradient optimizers, wavelets, multidimensional FFT/IFFT, 
sparse and dense linear solvers, etc.  

The solving stage of multiphysics simulations involves the 
solution of sparse linear systems using either direct or iterative 
methods. Direct methods are able to solve any system arise from 
Finite Element modeling while iterative ones usually require 
more customization. COMSOL is a representative commercial 
multiphysics simulation software that exploits MUMPS, 
PARDISO and SPOOLES as direct solvers. MOOSE is an open 
source multiphysics framework that relies on PetSc toolkit. 
PetSc interfaces several direct (e.g. Matlab, PASTIX, MUMPS, 
SuperLU, SuiteSparse) and iterative solvers. 

III. MODERN HARDWARE FOR HIGH PERFORMANCE 

COMPUTATIONS  

In the recent years, flash memory is widely utilized storage 
medium. Solid state disks (SSD) based on flash memories lack 
of mechanical and moving parts, provide low power 
consumption, and high random read/write performance. 
Increased reliability and decreased cost make them the storage 
medium of choice. The development of external memory 
algorithms for solving systems with large matrices was a 
popular research topic in the near past. The performance issues 
due to the bandwidth and latency of magnetic disks were 
addressed by utilizing clusters with distributed memory and 
high bandwidth interconnections, however at high cost. 
Nowadays, flash storage presents new opportunities for out-of-
core computing. The performance of enterprise flash motivated 
authors of [14] to investigate the out-of-core sparse matrix 
vector multiplication (SpMV) on a small SSD test-bed cluster. 
In our previous work [15] we show that the performance of 
OOC direct solvers can be significantly benefited from flash 
storage compared to traditional magnetic disks. 

Another emerging technology for solid state storage is Phase 
Change Memory (PCM). Compared to flash, PCM provides 
orders of magnitudes better read and write performance, better 
endurance and lower power consumption. It is byte addressable 
and does not require an erase operation before rewritten (i.e. 
supports in-place updates). There are two main approaches for 
using PCM in the memory hierarchy: the first proposes its 

utilization as secondary storage [16][17][18] and the other as 
non-volatile main memory alongside with DRAM [19][20]. 
Experimental results from early PCM based SSD prototypes 
[16][17][18] show that are already competitive to commercial 
enterprise level flash devices. Upcoming memory technologies 
like memristor (ReRam) and STT-RAM are expected to provide 
even better performance [21].  

Emerging parallel architectures like general purpose 
graphics processing units (GPGPUs), coprocessors/accelerators, 
even high-end x86 multicore processors are of special interest 
for the solution of sparse linear systems. Several studies have 
been presented that evaluate the utilization of modern processing 
subsystems for sparse matrix computations [22][23]. NVidia’s 
late, Kepler GPU architecture provides high level of thread 
parallelism and can achieve 1.66Tflops in a single GPU 
configuration (K40 model). Its architecture is based in SMX 
multiprocessor with 192 single precision CUDA cores and 64 
double precision units per multiprocessor. Moreover it 
incorporates up to 12GB of memory. Intel’s Xeon phi 
coprocessor with 1.2Tflops offers high computational 
performance utilizing up to 61 cores (244 hardware threads) and 
16GB of memory. Intel Xeon latest multicore processors 
incorporate up to 18 cores and are capable of more than a half 
Teraflop per socket.  

Upcoming hardware architectures like disaggregated server 
rack are going revolutionize high performance computations. 
Disaggregated rack architecture proposes the replacement of the 
traditional rack as a set of self-contained machines, to a pool of 
CPU, memory storage and network resources connected through 
a high-bandwidth and low-latency network [24][25][26]. This 
approach enables the dynamic construction of computing 
systems by allocating, each time, the required resources from 
these pools, depending to the workload demands [26]. 

IV. EXPIREMENTS 

A. Sparse Solver Libraries 

In order to evaluate the performance of direct and iterative 
solvers in the solution of large-scale sparse linear systems 
arising from electrical grid simulations and 
multiphysic/multidomain problems, we utilized four typical 
representative and state-of-the-art direct and iterative solvers. 
We employed the Intel MKL Pardiso and the INRIA PASTIX 
as our direct solvers and the GMRES and PCG iterative solvers 
from the PARALUTION library [27]. 

PARDISO [28] is a shared memory multiprocessing parallel 
direct solver for large sparse symmetric and unsymmetric linear 
systems. Intel MKL provides a version of PARDISO with out-
of-core functionality exploiting external memory to retain 
matrix factors. Specifically, Intel MKL 11.1.2 is employed and 
PARDISO is set to use a parallel (OpenMP) version of Metis 
[29] for ordering. PASTIX [30] is a high performance parallel 
direct solver for sparse linear systems. It relies on both POSIX 
threads (within a node) and MPI (within different nodes) for 
parallelization. PASTIX can, also, exploit secondary storage to 
preserve matrix factors, reducing the required amount of main 
memory for the solution of large systems. We used PASTIX 
version 5.1.4 along with SCOTCH (ver. 6.0.4) for ordering and 
OpenBLAS (ver. 0.2.14) in our experiments.  



Regarding the iterative solvers, we utilized PARALUTION, 
a sparse linear algebra library focusing on exploring fine-grained 
parallelism on modern processors and accelerators including 
multi/many-core CPU and GPU platforms. It provides a large 
number of iterative solvers and various preconditioners, ranging 
from general-purpose to more sophisticated. We have employed 
the Preconditioner Conjugate Gradients (PCG) and the 
Generalized Minimum Residuals (GMRES) methods as the 
iterative solvers in our experiments, while we have chosen the 
ILUTP preconditioner mainly due to its robustness. The PCG 
method is employed for the solution of SPD systems while the 
GMRES method for systems where the system matrix has no 
special properties. 

TABLE I. TEST MATRICES AND THEIR CHARACTERISTICS 

B. Expiremental Methodology 

Our evaluation focuses on the performance of each 
direct/iterative solver in terms of execution time and memory 
requirements. We aim to highlight possible strengths and 
weaknesses of each method (direct/iterative) and identify their 
performance limits in various hardware platforms. Thus, we 

utilize three different types of hardware: a) a flash SSD equipped 
WorkStation (WS1), b) a GPU enabled WorkStation (WS2) and 
c) a High Performance multicore Server (HPS).  The SSD 
workstation is a DELL Precision T3500 workstation equipped 
with 24GB of DDR3 RAM and a 4-core Intel Xeon W3550 
3.06GHz CPU. It is configured with an Intel 520 SSD 240GB 
(connected to SATA-III interface) as booting device and an 
OCZ Revodrive 350 PCIe 480GB as additional storage device 
for the experiments. The GPU workstation is a DELL T5500 
with 24GB DDR3 RAM, a 6-core Intel Xeon E5645 2,4GHz 
CPU and a Tesla C2075 GPU. Last, the high performance server 
is a HP BL460c Gen 9 blade server with 64GB DDR4 RAM and 
2 Intel Xeon CPUs E5-2695 v3 at 2.30GHz with 14 cores each. 
Both SSD workstation and 28-core server run 64-bit Centos 6.6 
(kernel 2.6.32-504.12.2) while GPU workstation runs 64-bit 
Ubuntu 14.10 (kernel 3.16.0-31-generic). 

Real, symmetric and unsymmetric linear systems of 
equations are examined. Test data M1-M8 were derived from 
Sparse Matrix Collection of the University of Florida [31]. 
Coefficient matrices M9-M11 arising from the tensor product 
discretization of linear parabolic multi domain problems by the 
Discontinuous Hermite Collocation coupled with Diagonally 
Implicit Runge-Kutta method [32][33]. A detailed description of 
the test sets is given in Table 1.  

Execution time and main memory requirements were 
measured for each case. PASTIX and PARDISO solvers were 
evaluated using the SSD enabled workstation and the 28-core 
server. An effort to exploit Tesla GPU along with CHOLMOD 
direct solver from SuiteSparse package gave results only for M1 
and M9 systems due to small GPU memory size. Therefore, we 
present results only from the two other hardware platforms 
(WS1, HPS). On the other hand, the iterative solvers from 
PARALUTION were evaluated in all hardware platforms. 
Regarding the OOC algorithms, their performance depends on 

ID NAME TYPE SIZE Non-Zeros 

M1 Inline_1 R, S, PD 503,712 18,660,027 

M2 Aster_perf-11a R, S, I  853,632 71,098,992 

M3 Audikw_1 R, S, I  943,695 39,297,771 

M4 Nice20mc R, S, I  715,923 28,066,527 

M5 Flan_1565 R, S, PD 1,564,794 114,165,372 

M6 StocF_1465 R, S, PD 1,465,137   21,005,389 

M7 kkt_power R,S 2,063,494 12,771,361 

M8 Atmosmodl R, U, I 1,489,752 10,319,760 

M9 StepDHC_DIRK_1 R, U 409,600 6,533,136 

M10 StepDHC_DIRK_2 R, U 1,638,400 26,173,456 

M11 StepDHC_DIRK_3 R, U 6,553,600 104,775,696 

TABLE II. DIRECT SOLVERS RESULTS 

 PASTIX PARDISO 

 WS1 (4-CORE, SSD) HPS (28-CORE) WS1 (4-CORE, SSD) HPS (28-CORE) 

MATRIX 

IC 

exec. 

time 

(sec) 

IC 

mem. 

(GB) 

OOC 

exec. 

time 

(sec) 

OOC 

mem. 

(GB) 

IC exec. 

time 

(sec) 

IC 

mem. 

(GB) 

IC exec. 

time 

(sec) 

IC 

mem. 

(GB) 

OOC 

exec. 

time 

(sec) 

OOC 

mem. 

(GB) 

IC 

exec. 

time 

(sec) 

IC 

mem. 

(GB) 

M1 16.15 1.99 16.99 1.84 9.57 2.08 10.44 1.81 15.03 0.67 4.30 2.27 

M2 406.31 15.50 1219.94 3.91 73.20 16.10 347.35 14.73 408.87 2.31 44.97 17.02 

M3 227.76 10.40 701.62 3.91 44.60 11.00 216.82 10.56 289.11 1.51 33.11 12.60 

M4 204.23 9.19 480.75 3.90 40.92 9.59 178.13 9.06 225.24 1.08 24.54 10.82 

M5 172.63 13.50 667.04 3.92 40.76 13.80 149.08 12.75 202.28 2.17 23.79 14.10 

M6 200.39 9.84 358.22 3.90 52.29 10.10 195.94 9.52 241.94 0.95 29.06 10.98 

M7 261.87 5.61 648.03 3.91 88.14 5.99 99.49 3.82 202.20 1.30 18.55 6.09 

M8 512.03 16.80 1427.50 3.95 125.06 17.10 503.39 15.40 559.38 1.22 65.00 17.06 

M9 12.42 1.56 12.70 1.48 8.09 1.63 7.26 1.33 15.85 0.44 2.67 1.70 

M10 69.09 7.10 167.05 3.97 36.66 7.38 42.88 6.05 88.40 1.76 11.93 7.66 

M11 

Not 

enough 
memory 

- 
Not 

enough 
memory 

- 
 216.95 32.8  

Not 

enough 
memory 

- 
Not 

enough 
memory 

- 
74.87 34.07 

 



the available main memory. Thus, we restricted the maximum 
amount of memory that OOC algorithms can use to 4GB in order 
to conduct more realistic experiments.  

C. Results 

Table II summarizes the results for the direct solvers. The in-
core execution utilizing the 28 cores of HPS server is 1.5 to 5.5 
times faster than PASTIX and 2.4 to 7.7 times faster than 
PARDISO, compared to the in-core execution in the 4 cores of 
WS1. The IC runs in the 28-core platform consume slightly 
more main memory than the runs in the 4-core platform. On the 
other hand, the out-of-core execution of PASTIX is up to 3.2 
times slower but requires up to 4.2 time less memory than the 
in-core execution of WS1. Similarly, the out-of-core solution 
algorithm of PARDISO is up to 2.2 times slower than the 
corresponding in-core but consumes up to 12.6 times less 
memory. PARDISO achieves better performance and has less 
memory requirements compared to PASTIX in all cases. 
Particularly, the IC execution in the 28-core HPS server is faster 
than PARDISO by a factor ranging from 1.3 to 4.7 and the OOC 
by a factor ranging from 1.1 to 3.2 respectively. 

Table III presents the experimental results for the iterative 
solution methods. Comparing the execution time between the 
multi-core platforms, we can observe that in 4 cases the 
utilization of more cores leads to increased execution times. This 
can mainly be attributed to the limited parallelism found in the 
backward and forward substitution phases for the specific 
systems. For the other cases, execution on the 28-core platform 
results to a speedup between 1.1X and 1.9X. Iterative solvers 
can greatly benefit from the vast amount of computational 
resources found in modern GPUs. As we can observe, execution 
on the GPU outperforms the execution on the 4-core and the 28-
core platforms by a factor ranging from 3.3 up to 13.8 and from 
3.2 up to 26.1 respectively (with the most values being between 
3 and 10).  

Furthermore, iterative methods outperform direct ones in the 
majority of cases for the 4-core WS1. This is not the case for the 
28-core platform, where direct methods outperform iterative 
algorithms in 5 cases, mainly for systems where the system 
matrix exhibits a low sparsity ratio. Utilizing the GPU platform 
allows iterative solvers to achieve the best performance in all 
cases that was able to run.  

Another important aspect of a linear solution algorithm is its 
memory requirements. Direct solvers exhibit increased memory 
demands as the size of the linear system increases. Thus, linear 
system M11 was solved only on the HPS platform that 
comprises a large amount of main memory. Even OOC 
execution failed due to the 4GB limit that we have set. We 
increased the available amount of memory to 8GBs and 
PARDISO was able to solve M11 in 615sec. On the other 
PASTIX was not possible to provide a solution even with 20GB 
of RAM available to the OOC solver. It is remarkable that 
PARDISO is almost twice faster than PARALUTION in the 28 
core execution.  

V.   CONCLUSIONS 

The efficient solution of sparse linear systems of equations 
is of great importance for a wide range of scientific and 
engineering problems, including power systems and multi-
physics simulations. In this paper, we presented a quantitative 
analysis of the performance of state-of-the-art direct and 
iterative linear system solution algorithms on modern hardware 
architectures, including multicore CPUs, GPU-based platforms 
and flash-based SSDs. Experimental evaluation on a series of 
representative large-scale linear systems demonstrated that 
iterative methods outperform direct ones in most cases and are 
capable to exploit GPUs’ processing power more efficiently due 
to smaller memory requirements. Moreover, results unveiled 
that flash SSDs and OOC algorithms can be a better alternative 
and can alleviate the increased memory requirements of the in-
core solution algorithms. However, the efficiency of a method 

TABLE III. ITERATIVE SOLVERS RESULTS 

 PARALUTION 

 All cases WS1 (4-CORE, SSD) HPS (28-core) WS2 (GPU) All cases 

MATRIX Iterations Exec. time (sec) Exec. time (sec) Exec. time (sec) Mem. (GB) 

M1 13 0.91 5.20 0.19 1.15 

M2 65 12.73 8.76 2.68 2.42 

M3 17 2.67 8.75 0.44 2.2 

M4 34 3.82 3.23 0.89 1.66 

M5 37 10.87 8.71 2.03 3.6 

M6 33 0.46 0.74 0.11 2.62 

M7 77 28.81 29.89 8.66 3.23 

M8 52 0.25 0.14 0.04 3.52 

M9 53 16.79 11.34 1.21 1.03 

M10 64 18.98 11.75 2.90 4.04 

M11 
162 254.63 135.96 

Not enough 

memory 
13.01 

 



depends, in many cases, on the characteristics of the coefficient 
matrix itself. Thus, the apt selection of the appropriate method 
is needed.   

Relying to the above we believe that contribution of modern 
hardware is capable to lead to important savings of 
computational time in numerical linear algebra, but further 
research is needed in order to exploit its full advantages. Our 
future work aims to further improve the efficiency of out-of-core 
algorithms in non-volatile memories. 
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