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Abstract. An approach for the solution of multi-domain and multi-physics problems is the application of an interface 
relaxation (IR) method to treat the solution on the common boundaries between domains of the original problem. This 
solution process is more efficient than other techniques, but still remains quite computationally intensive and the 
inherently parallel solution of the underlying problems does not scale to the overall method. This paper presents an 
asynchronous parallel algorithm of a specific IR method, named GEO. The performance results in terms of convergence 
speed and execution time demonstrate the efficiency of the proposed algorithm towards the solution of large-scale multi-
domain and multi-physics problems. 
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INTRODUCTION 

Solving composite Partial Differential Equations (PDEs) is an indispensable step in numerous scientific 
applications. However, this is a computationally and memory demanding process for large-scale differential 
equations. This is especially true for multi-domain and multi-physics problems where different PDE operators are 
applied on different subdomains. Domain decomposition techniques [1], [2] were primarily used to face such 
problems. They involve decomposition at the linear algebra level upon discretizing the domain and the equation with 
the desired method. Though, their main disadvantage is the non flexibility on the usage of different method per 
subdomain of the initial problem. Interface Relaxation methodology is an interesting alternative [3]–[5]. 

The IR methods’ main advantage is that they treat a multi-domain and multi-physics problem as a loosely 
coupled system of sub-problems consisting of much simpler PDE problems concerning both the geometry and the 
differential operator. More specifically, in the IR methods the PDE domain is decomposed into subdomains, derived 
by the underlying physics or by high computational needs.  

In this paper, we present an asynchronous parallel implementation of the GEO [6] IR method. The proposed 
methodology manages to overcome the traditional bottleneck of parallel IR methods and harness the underlying 
inherent parallelism of the solution of the subdomains, making the method scalable to large distributed parallel 
installation. A preliminary experimental evaluation of the asynchronous GEO demonstrates its scalability and 
efficacy for the solution of sizable multi-domain and multi-physics problems. 

The rest of the paper is organized as follows. The proposed asynchronous algorithm and implementation details 
are described in Section 2, while Section 3 presents the experimental evaluation results. Finally, in Section 4 
conclusions and future work are presented. 

PROPOSED ALGORITHM 

Sequential Algorithm 

The PDE problem is divided in sub-problems, each of which discretized with the appropriate method. Boundary 
conditions have to be specified and applied to each sub-problem, as well as initial guesses on the interfaces between 



the sub-problems. Then the solution and the gradient of each sub-problem are computed. After the solution step is 
performed, we have to get the values of the solution and the gradient on the interface points and compute the new 
relaxed values. With the GEO [6] IR method the new relaxed values on the interface points are obtained by adding 
to the old ones a geometrically weighted average of the normal boundary derivatives of the adjacent subdomains. 
Specifically, the solution at each iteration k+1 is given from the following equation: 
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normal derivatives in the two adjacent subdomains and ρ is a relaxation parameter for convergence acceleration.  
These new relaxed values are then passed back to the sub-problems as updated values of the solution on the 
interfaces. Once the relaxed values of the interfaces are passed back to the sub-problems, a new iteration begins. 

Synchronous Parallel Algorithm 

GEO has a profound static parallel implementation, where each node represents a computational core that solves 
one subdomain. The computed PDE solutions and gradients on the interface points from each node are sent as a 
message to the node that handles the adjacent subdomain. When each node receives all adjacent interface points 
information, it computes the new relaxed interface points values, which serve as new estimates for the next iteration 
of the adjacent subdomains and sends them back as messages. When new interface values have been sent to all 
subdomains, the next iteration can begin in all nodes. 

Asynchronous Parallel Algorithm 

The main bottleneck of the parallel GEO algorithm emerges when the sub-problems have a lot of neighbors, 
which are of unequal size, and thus unequal computational workload. As a result, each sub-problem has to wait until 
all of its neighbors finish their solution step and new relaxed values have been computed for all the interfaces. 

In the asynchronous parallelization approach, the synchronization step is temporally relaxed and each subdomain 
is iteratively computed based on the currently available interface values provided by the neighboring sub-domains. 
The above scheme creates a message queue for each subdomain, with the queue filled with messages about new 
interface values from the neighboring subdomains. In the case that there are no new messages the subdomain solver 
waits. If the queue is not empty, all messages are consumed in a LIFO order for each interface and older messages 
are discarded. New values for each interface are locally computed and a new iteration of the PDE solver starts for 
the respective subdomain. At the end of each local iteration, the new local values computed at all interfaces are 
asynchronously sent to the respective neighbors. The process ends when for all interfaces all subdomains fail to find 
significant difference in the new values computed. 

 

EXPERIMENTAL RESULTS 
In order to evaluate the performance results of the proposed asynchronous algorithm, we have employed a 

simplified problem that consists of three sub-problems and two interfaces. 

It is described as follows: 
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21 == xx  while 22 =γ . Seven different cases are formed examining different grid 

sizes, according to seven different values of the discretization parameter , which is considered equal in both  and  
direction. Each different grid size corresponds to a different number of interface points, increasing from 6 to 321. The 
left sub-problem is approximately four times larger than the middle, while the right one is approximately two times 
larger than the middle sub-problem. The two interfaces have the same number of points and therefore are of equal 
workload.  

The experiments are performed in 3 different predefined virtual machines. The virtual machines used for the 
experiments have 4 virtual cores and 2GB RAM and are running in a XenServer virtualization environment installed 
on a server with 2 x Intel(R) Xeon(R) CPU E5-2620, 2.00GHz. 

The asynchronous implementation of GEO is compared to a synchronous parallel implementation of GEO 
recently presented in [7] in terms of convergence speed and execution time. 

The following figures depict the convergence history of the asynchronous GEO implementation on the internal 
points of the interfaces. FIGURE 1 (a) depicts the exact and the computed solutions on iterations 1, 3, 6, 8 on 
interface 1 for the case c1. FIGURE 1 (b) shows the convergence history of interface 1 and case c1 for the 
synchronous algorithm. The results can be compared and one can see the similarity of the computed solutions per IR 
iteration for both synchronous and asynchronous algorithms. Similar results hold for all the test cases and both 
interfaces proving the fast convergence of GEO. 

  
FIGURE 1. True solution and computed solutions on iterations 1, 3, 6, 8 on interface 1 for the case  c1 in asynchronous (a) and 

synchronous (b) GEO. 

In FIGURE 2 the max norm of the relative difference of successive solutions on interface points vs the number of 

iterations 
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GEO and the synchronous GEO. Although for both algorithms the initial values on the interfaces  are the same, this 
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problems and both interfaces. 

TABLE 1 presents the comparison of the execution times of the two implementations of GEO. For the 
synchronous implementation, the total time corresponds to the time for the solution of the three subdomains along 
with the interfaces computations’ time and the necessary communication, for 15 iterations, while in the asynchronous 
implementation only the middle subdomain performs 15 iterations. The comparison of the execution times proves the 
high significance of the asynchronous implementation, especially as grids become finer and thus, problems get larger. 

In order to study and clarify the contribution of the proposed algorithm, as instant steps for the employed test 
problem, we plan to analyze the timestamps of each IR iteration, for each interface, through the execution of the 
global problem, for both the synchronous and the asynchronous GEO. We will consider the relative error norm on the 
interfaces per iteration in order to depict the differences in the behavior of the two GEO. Finally, we contemplate to 
study how the workload of each node is lay out through the execution time of the global problem, by separating and 
indicating the time for the PDE solver, IR method, communication time and idle time for both synchronous and 
asynchronous algorithms. 



 
FIGURE 2. Max norm of the relative difference of successive solutions on interface 1 points vs the number of iterations for the 

case c1 for GEO and asynchronous GEO. 

TABLE 1.  EXECUTION TIMES OF ASYNCHRONOUS AND SYNCHRONOUS GEO 

 C1 C2 C3 C4 C5 C6 C7 

ASYNCHRONOUS GEO 12.12 12.361 11.81 7.727 14.805 38.022 256.084 

SYNCHRONOUS GEO 3.495 4.068 6.14 13.595 39.808 154.633 723.731 
 

CONCLUSION 
In this paper an asynchronous parallel algorithm for the solution of multi-domain/multi-physics problems using 

the Interface Relaxation method is presented. Experimental results show that temporally relaxing the synchronization 
step between subdomains does not degrade the convergence properties of the solutions process and significantly 
lowers the wall clock execution time of the algorithm. During the experiments, more than 300% speed-up was 
achieved compared to the synchronous parallel implementation. Future work will include the integration of a work 
stealing scheme for better utilization of computational resources for problems where subdomains outnumber 
computational cores and extensive experimental tests with multiple scenarios in the utilization of the computational 
resources, a larger number of domains varying in size and difficulty and different scenarios in the composition of the 
original multi-domain problem. 
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