
IMPLEMENTING HYBRID PDE SOLVERS

Manolis Vavalis and George Sarailidis

Abstract We investigate the possibility that we effectively combine both conven-
tional deterministic PDE solving methods and traditional probabilistic Monte Carlo
approaches for solving linear Elliptic Partial Differential Equations. Our objective
is to provide a robust and easy to use implementation that allows further experi-
mentation on this new type of PDE solvers in order to elucidate their capabilities
and computational characteristics. We first present the general formulation of the
algorithm, then describe its implementation in C++ for a class of model problems in
two and three space dimensions, we analyze its performance and we finally discuss
possible extensions.

1 Introduction

The Monte Carlo method has the capability to provide approximate solutions to a vari-
ety of mathematical problems, not necessarily with probabilistic content or structure,
by performing statistical sampling experiments. About a century has been passed
since the discovery of methods which based on the Monte Carlo concept provide
numerical approximations to Partial Differential Equation (PDE) problems. These
methods generate random numbers and by observing certain of their characteristics
and behaviour are capable of calculating approximations to the solutions. Specifi-
cally, it was [43] who first considered the raltionship between stohastic processes and
parabolic differential equations followed by [14] who proposed numerical procedures
for elliptic PDEs while [34] were the fist to dignify this stohastic approach with a
name refering to the gambling facilities available at the Monte Carlo city and propose
it as a generic term for numerical methods that use sampling of random numbers.

Manolis Vavalis · George Sarailidis
Department of Electrical & Computer Engineering, University of Thessaly, Gklavani 37, 38221
Volos, GREECE e-mail: mav@uth.gr, e-mail: gesarel@uth.gr

1

http://dx.doi.org/10.6084/m9.figshare.1134520

mav@uth.gr
gesarel@uth.gr

2 Manolis Vavalis and George Sarailidis

Since then Monte Carlo methods have been commonly, and in fact heavily1,
used and still are for many important problems, but not much for linear PDE-based
applications. They are generally considered as methods of last resort idealy suitable
only for problems either in high dimensions or very complex geometries [31]. It
is interesting to point out that the Monte Carlo pioneer Mark Kac’s say ”You use
Monte Carlo methods until you understand the problem” several years ago describes
accurately how most of us curently view Monte Carlo methods.

PDE problems have been related to Monte Carlo in several ways (see [27] for
a recent survey). The famous Feynman-Kac formula for example, establishes an
interesting link between PDEs and stochastic processes. Monte Carlo methods has
been, and to a great extent stil remains, the only computational choice for several
non-linear problems while it has been recognized as a good choice for many other
computationally difficult non-linear problems. In addition they seem to be a natural
choice for any differential equation in which one or more of the terms is a stochastic
process, thus resulting in a solution which is itself a stochastic process. This is clearly
depicted by the plethora of very recent Monte Carlo based research efforts devoted
to numerical solution of such equations commonly known as stochastic differential
equations (see for example [45, 7] for time depented problems and [9, 33, 45, 8, 55]
for elliptic problems).

As already mentioned even fundamental linear PDEs are strongly related to sto-
hasticity. For example, it is known that diffusion is in fact a form of brownian motion
at microscopic scale. This provided enough motivation to the several attempts to
develop and promote Monte Carlo based numerical solvers for time depended PDEs
(e.g. [25, 13, 23, 19] and in particular [27]). Linear non-stohastic elliptic boundary
value problems are also strongly connected to probability (regorous measure the-
ory). For example, integrals with respect to certain measure have been recognized
as solutions of certain parabolic or elliptic differential equations [14]. It is worth
to mention that there are several recent research efforts concerning probabilistic
interpretations of harmonicity and of fundamental ellipric PDEs using Brownian
motion and stochastic calculus (see [42] and reference therein).

In this paper we restrict our investigation on the effectivness of Monte Carlo
methods for the numerical solution of linear elliptic PDEs and we concentrade on the
Poisson equation. It has to be pointed out that although there has been, and curently
exist, significant research activity on this subject, the proposed methods have not
attracted so far the expected attention. Furthermore, one can find very few software
components2 that are publically available and appropriate to support the experimen-
tation which is much needed for elucidating the characteristics and idiosygrasism of
the proposed methods and convining both researchers and practitioners that can be
effectivelly used for real-world problems (see for example [48].

1 The U.S.A. Department of Energy claimed that Monte Carlo simulations have consistently
consumed up to a half of their high-performance cycles since the begining of its supercomputing
facilities.
2 Searching, for example, with “Monte Carlo” as keyword in TOMS BibTeX bibliography results
with just 10 items.

Page:2 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

IMPLEMENTING HYBRID PDE SOLVERS 3

In this paper we restrict ourselves on rectangular multidomains in two and three
dimentions and we consider the implementation of a computational framework that
allows easy experimentation with hybrid methods consisting of a combination of
mainly two steps:

Stochastic preprossesing A Monte Carlo-based walk on spheres approach is uti-
lized to decouple the original PDE problem into a set of intepented PDE sub-
problems.

Deterministic solving Any of the resulting sub-problems is numerical solved inde-
pentently by means of selected finite element schemes.

It is our believe the proposed and implemented framework promotes an interesting
new concept in solving PDEs and not only supports experimentation but it has the
potential to become a practical tool too.

The rest of this paper is organized as follows. In section 2 we present a review
of existing approaches for the numerical solution of linear elliptic PDEs using
Monte Carlo based methods. We also present the mathematical background and the
associated generic algorithm for our stochastic/deterministic solving framework and
system and briefly comment on its characteristics. Implementation issues are adressed
in section 3 which are coupled with instalation and usage details. A summary of the
numerical experiments performed can be found in section 4. Our concluding remarks
together with our vision for future enhasments and research prospects are given in
section 5.

2 Mathematical Background

2.1 Monte Carlo methods for linear elliptic PDES

(we mention Courtant in the intro. is it?)
First was [39] which is based on the then classified work of [34].
They actually modivated people to build a special purpose machine [47] also [46]

applications too
[53] deals with a Monte Carlo method for the numerical solution of the linear

system that arices from the discretization of the Poisson equation on a 2-dimensional
rectangular domain using the 5-point-star finite difference scheme with uniform
discretization step.

What methods do exist late [39, 18] recent [54, 11, 15, 35, 36, 16] in particular
those in the past decade [29, 32, 23, 20, 38, 37, 17, 40, 24, 12, 45, 50, 41, 51, 48, 53]
This recent excellent work have so far received minimal attention from our scientific
community (e.g. according to citations at scopus.)

(Check if [26, 45, 48] is for stochastic PDES of just plain PDEs CLASIFY
[21, 52])

We should mention that (excluding just a few exceptions) most of the related
work mentioned so far does not focus on the efficient implementation of Monte

Page:3 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

4 Manolis Vavalis and George Sarailidis

Carlo solvers in general and on modern parallel computing systems in particular. It is
pausible why the multicore available systems have not attarcted Monte Carlo methods
at least as much as expected3.

2.2 Stochastic/deterministic elliptic PDE solvers

We consider the following elliptic boundary value problem

Lu(x) = f (x) x ∈D ⊂ Rd , (1)

Bu(x) = g(x) x ∈ ∂D , (2)

where L is an elliptic differential operator, B a boundary operator and d ∈ N. We
assume that the regularity conditions for the closed domain D , the operators L and B
and the given functions f (x) and g(x) are satisfied. These conditions guarantee the
existence and uniqueness of the solution u(x) in C2(Dcap∂D) of problem (1)–(2).
We furthermore assume that the donain D consists of (or can be splitted into) ND

subdomains, i.e.
D = ∪ND

µ=1Dµ (3)

and that Lµ and fµ are the restrictions of L and f on Dµ while Bµ and gµ are the
restrictions of B and g on ∂Dµ ∩∂D . We finally define the interface between the two
subdomains Dµ and Dν as

Iµ,ν = ∂Dµ ∩ (∂Dν ∪Dν)⊂ Rd−1, µ 6= ν , µ,ν = 1, . . . ,ND . (4)

3 http://www.oxford-man.ox.ac.uk/gpuss

Page:4 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

http://www.oxford-man.ox.ac.uk/gpuss

IMPLEMENTING HYBRID PDE SOLVERS 5

Obviously we consider only those interfaces that Iµ,ν 6= /0.
Data: i1, i2, . . . , iN : the ids of the subdomains in which we wish to compute the

solution.
Result: ũµ , µ = i1, . . . , iN : computer approximations of the restrictions of the

exact solution u in the subdomains Dµ , µ = i1, . . . , iN .

// PHASE I: Estimate solution on the interfaces
;
while Iµ,ν ⊂ ∪N

j=1∂Di j do
Select control points xi ∈Iµ,ν , i = 1,2, . . . ,Mµ,ν ;
Estimate the solution u at the control points xi using a Monte Carlo method;
Calculate the interpolant uI

µ,ν of uµ,ν using the control points xi;
end

// PHASE II: Estimate solution in the subdomains
;
for j = 1,2, . . . ,N do

Solve the PDE problem:;
Li j ui j(x) = fi j(x) x ∈Di j ;
Bi j ui j(x) = gi j(x) x ∈ ∂Di j ∩∂D ;
Li j ui j(x) = hi j(x) x ∈Di j ; // hi j(x) constructed using the

uI
µ,νs

end
Algorithm 1: The Generic Algorithm.

It is important to point out that the above generic methodology becomes particu-
larly attractive in several real-world configurations, for example when the restrictions
of the elliptic operator L is not the same in all subdomains, when there exist singu-
larity points in some subdomains, when the PDE domain Ω is complex and can be
simplified if decomposed in subdomains In such cases it is very important that
one selects the most appropiate local solver tailored to each particular subdomain and
the restrictions of the operators and functions on it. Furthermore, the above scheme
offers us the possibility of computing the solution only on selected subdomains that
are of particular importance to us.

Finally we should note that PARALLEL and in particular on distributed het-
erogeneous systems. Besides the inherent to the Monte Carlo method parallelism
the MCDD enjoys several other parallel processing characteristics. Nice ratio com-
munication computation. Preliminary numerical data support our claims while a
systematic experimental verification of the above mentioned advances of MCDD is
under way and will be presented elsewhere.

Page:5 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

6 Manolis Vavalis and George Sarailidis

2.3 Related Work

Model Carlo based stochastic-deterministic hybrid methods are not new in general.
Original idea maybe in [39] IS IT SO?. For non-stochastic linear PDEs though,
it was only very recently that such methods have been proposed. To the best of
our knowledge the idea first appeared at [21, 1] and furthermore considered in
[1, 2, 3, 5, 6, 4]Elements of the above discribed algorithm have been considered
previously. Specifically, ... Similar to us A Hybrid Stohastic/Deterministic Method
See PDE model (and beyond) from lecture slides of Mascari

Lu≡−u′′(x) = f (x), x ∈Ω ≡ [a,b] (5)

with a,b,γ ∈ R, subject to folowing generic boundary conditions

Bu(x) = g(x), x ∈ ∂Ω ≡ [a,b] (6)

which, for simplicity in the presentation of the method are taken to be Dirichlet.
We assume that the regularity conditions for the closed domain and the given

functions b(x), c(x) 0, (x) and (x) are satisfied. These conditions guarantee the
existence and uniqueness of the solution u(x) in C2 () C() of problem (1),

Assume that Ω is decomposed into the p non-overlapping subdomains Ωi ≡
[xi−1,xi], i = 1, . . . , p with x0 = a, xp = b and xi−1 < xi ∈ Ω for i = 1, . . . , p− 1.
We denote the size of a subdomain Ωi by `i = xi− xi−1 and the restrictions of L, f
and γ in Ωi by Li, fi, γi, respectively. We further assume that γ(x) = γi for x ∈ Ωi,
i = 1, . . . , p, where the γi’s are real constants.

Our implementation can solve Poisson’s equation with Dirichlet boundary condi-
tions. ([note: The following sentence is wrong - it’s there just to be under considera-
tion] What restricts this method of solving other problems too, is the need for the
Green’s function that suits the problem.)

It supports an arbitrary number of threads. For the multithreading we use the
pthreads library (note: the program’s form allow for easy migration to MPI).

Moreover, the domains that are supported are 2D and 3D hyperrectanges. Those
can be decomposed to an arbitrary M x N grid of smaller subdomains (hyperrectan-
gles).

Roughly, we accomplish probabilistic domain decomposition as follows:

compute solution at interface points using the Monte Carlo method described
in [15] (we implement it ourselves – this part can be easily detached in order to
be used in another application), we estimate local solutions along the boundaries
of the new subdomains,

provide solution on interfaces we interpolate the estimated local solutions (we use
Sintef’s Multilevel B-spline (MBA) [28] library for the 3D and Burkardt’s splines
library for the 2D), and thus we form the boundaries of the new subdomains,

compute local solutions now that the boundaries of the subdomains are known, we
solve the problem for each subdomain using a deterministic method (specifically
?finite elements?/?conjugate gradient?) (we use the deal.II library).

Page:6 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

IMPLEMENTING HYBRID PDE SOLVERS 7

3 Implementation and Usage

The above described algorithm has been implemented utilizing three different tech-
nological frameworks.

1. Basic Implementation at https://github.com/mvavalis/Hybrid-numerical-PDE-solvers,
2. CPU/GPU implementation and
3. Web services implementation.

We note that the basic imlementation may be compined with either the CPU/GPU
or with the web services or a compination of them. In the rest of this section and for
the simplicity in the presentation, we discribe each implementation separetly.

3.1 Basic implementation

We use quasi only once for parallelism but see [30] This invited review of parallel
quasi-Monte Carlo methods provides an overview of the subject and some new results
for single eigenvalue computations.

external libraries include ???? lisence
The problem (i.e. the right hand side of the Poisson’s equation and the boundary

functions) is specified in file Problem.h. [note: mention test_u() also (more
in the comments in main.cpp)]

main() creates a Pdd object, and calls Pdd::pdd() which takes care of the
whole process.

Pdd::pdd() goes through the following steps:

1. it sets the coordinates of the nodes,
2. it creates a MCDriver object and calls MCDriver::monte_carlo(), which

gets the coordinates of the nodes as input, and outputs the estimation for each
node,

3. if we are solving a 3D problem, it creates an Inter3DDriver object and calls
Inter3DDriver::interpolation(), which gets the coordinates of the
nodes and their respective estimations as input, and outputs the new boundaries
(2D planes); else it skips this step (when solving the 2D ploblem, interpolation is
set to use directly through the finite element solver),

4. lastly, it creates a LaplaceDriver object and calls LaplaceDriver::laplace_driver(),
in order to solve the problem in each subdomain and output the results.

MCDriver::monte_carlo() creates one job for each node and hands the
jobs to the available threads. It returns when all threads are finished. The estima-
tion for each node is computed by MCDriver::solve() which uses the method
of][15]. (described at the next section). Inter3DDriver::interpolation()
creates one job for each node and hands the jobs to the available threads. It re-
turns when all threads are finished. Each thread creates an MBA object and calls

Page:7 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

https://github.com/mvavalis/Hybrid-numerical-PDE-solvers

8 Manolis Vavalis and George Sarailidis

MBA::mba.MBAalg() for the 2D interpolation. Sintef’s Multilevel B-splines
Library (MBA4) library is used. In particular we [28] ..
LaplaceDriver::laplace_driver() creates one job (corresponding

to a certain subdomain) for each node and hands the jobs to the available threads. It
returns when all threads are finished. The solution for each subdomain is computed
by LaplaceSolve::run().

The numerical solution of the partial differential equations in each subdomain
defined is computed by LaplaceSolve::run() which properly utilizes the state
of the art C++ program library deal.II5. This recently developed and already widely
used library [10] offers adaptive finite element solvers of high quality for the numeri-
cal solution of partial differential equations. Specifficaly the class LaplaceSolve
is based on class LaplaceProblem, implemented in the 4th step of the tutorial,
in the documentation of library’s version 6.1.0. [note: more on this later]

The walk-on-spheres algorithm and our implementation (MCDriver::solve()):
MCDriver::solve() is based on the walk-on-spheres method of [15] They

describe the algorithm (one walk) as follows (say, we want to estimate u(x0)):
[additional definitions: s is the current solution estimation; B(x) is the largest ball in
the domain centered at point x; q(y) is the right hand side of the problem; a(d) is a
function associated with Green’s function for the problem, which takes as input the
radius of the B(x)] step i: assign x0 to x; assign 0 to s; step ii: if x is close enough to
the boundary, go to step v; step iii: find randomly a point y inside B(x), with respect
to the density of B(x) (more on this later); assign to s, the sum of the previous value
of s, plus the product of q(y) multiplied by a(d); step iv: find randomly a point on
the surface of B(x), assign this point to x; go to step ii; step v: return s; This process
is repeated many times, and the mean of the estimations at the end of each process is
used as the final estimation.

MCDriver::solve() takes as input the coordinates of the node (argument x,
which is a vector of 2 or 3 dimensions) and the number of walks to do (argument
nof_walks); and outputs the estimation of the value of the function which we
want to find at point x. Note that the first step in each walk is accomplished using
a quasi-random sequence; [conjecture] the first step determines considerably more
than the rest of the steps, the region where the walk takes place; therefore, using a
quasi-random sequence for the first step helps a lot to make a more uniform sampling,
which in turn results in faster convergence [fysika 8a mporouse na einai ola quasi,
alla auto einai zoriko...]. The code describing its function follows:

Listing 1 Test

double MCDriver<DIMS> : : s o l v e (i n t no f wa lks , c o n s t double ∗x)
{

double m s o l e s t = . 0 ; / / mean o f computed s o l u t i o n s
f o r (i =0 ; i<n o f w a l k s ; i ++) {

double s o l e s t = . 0 ; / / c u r r e n t computed s o l u t i o n
i f ((d = c a l c s p h e r e r a d (x)) > b t o l) {

q u a s i u p d a t e y (x , y , d) ;

4 http://www.sintef.no/upload/IKT/9011/geometri/MBA/mba-1.1.tgz
5 http://www.dealii.org/

Page:8 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

http://www.sintef.no/upload/IKT/9011/geometri/MBA/mba-1.1.tgz
http://www.dealii.org/

IMPLEMENTING HYBRID PDE SOLVERS 9

s o l e s t += a (d)∗ Prob . q (y) ;

q u a s i u p d a t e x (x , d) ;
}

whi le ((d = c a l c s p h e r e r a d (x)) > b t o l) {
r a n d u p d a t e y (x , y , d) ;
s o l e s t += a (d)∗ Prob . q (y) ;

r a n d u p d a t e x (x , d) ;
}
s o l e s t += Prob . f (x) ;

m s o l e s t += s o l e s t / n o f w a l k s ;
}

re turn m s o l e s t ;
}

Additional variables and functions used: d: the radius of the current ball (calculated
by calc_sphere_rad(x), which receives as input the center of the ball x) btol:
the boundary tolerance Prob.f(x): the values on the boundary Prob.q(y): the
right hand side of the problem rand_update_y(x, y, d): find randomly a
point inside B(x), with respect to the density of B(x) rand_update_x(x, d):
find randomly a point on the surface of B(x) quasi_update_y(x, y, d):
same as rand_update_y(x, y, d), however, using a quasi-random sequence
quasi_update_x(x, d): same as rand_update_x(x, d), however, us-
ing a quasi-random sequence a(d): a function associated with Green’s function (as
described in [15])

More on how we find randomly a point inside B(x), with respect to the density of
B(x) (rand_update_y(x, y, d)): [for the two dimensional case]

To calculate the new y we need to calculate a new radius and angle of the vector
to add at the vector corresponding to the point x.

The probability density function (PDF) of the radius and the angle is: ρ(r,θ) =
2r

πd2 ln d
r , and because it is independent of the angle, we can choose an angle uni-

formly. Now we have to find a new PDF (let’s say ρ(r)) for the radius: ρ(r) =∫ (
0 2∗ pi)ρ(r,θ)dθ == 2πρ(r,θ) = 4r

d2 ln d
r

We can choose a radius using the quantile function of ρ(r) (i.e. the inverse of its
cumulative distribution function). However, we cannot compute the quantile function
analytically, therefore we use the rejection method [44].

[MATLAB script (to see the ρ(r)): d = 1;r = 0 : .001 : d;y = (4/d2) ∗ (r ∗
log(d)− r.∗ log(r)); plot(r,y);] The bell like form of ρ(r) means that the rejection
method is going to be efficient.

[f (x) = max(PDF ′) (this makes the implementation even simpler (and faster)):
(d/dx)(PDF ′) = (4/d2)∗ (lnd− lnr−1) = 0 <=> lnr = lnd− lne <=> r = d/e,
that is f (x) = max(PDF ′) = max(2∗ pi∗ρ(r,θ)) = 2∗ pi∗ρ(d/e,θ) = 4/(e∗d)

Page:9 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

10 Manolis Vavalis and George Sarailidis

What we gonna do: 1) choose uniformly a random x1 in (0, d), and a random x2 in
(0, 4/(e*d)) 2) check if (x1, x2) is below the PDF’ curve, that is if 2∗ pi∗ρ(x1,θ)< x2.
If it is, we found our radius x1, else go to step 1.]

3.2 Parallel implementation on Central Processing Units (CPUs)
and Graphics Proccesing Units (GPUs)

OpenCL (Open Computing Language) presents a framework for developing programs
which execute across heterogeneous platforms consisting of CPUs, GPUs, and other
processors. OpenCL 1.0 out late 2008 Vision: write one portable application and
execute in any processor or collection of processors. Strong industry support and
drivers out for NVIDIA, Intel, AMD/ATI, IBM (Cell) chipsets etc. CUDA? Since
2013, OpenCL is supported by ARM, Altera, Intel etc. and became an industry
standard. CUDA only for NVIDIA but it is simpler to implement.

3.3 Web Implementation through web services

4 Numerical Experiments

4.1 2-dimensional Experiments

We start by considering the rectangular domain Ω ≡ [−1,1]× [−1,1] and the Poisson
equation

∂ 2u
∂x2 +

∂ 2u
∂y2 = (1−π

2)(sin(πx)sinh(y)+4cosh(2x)cos(2πy)) , ∀(x,y) ∈Ω , (7)

subject to the following Dirichlet boundary conditions

u(±1,y) = cosh(±2)cos(2πy)
u(x,±1) = sin(πx)sinh(±1)+ cosh(2x), ∀(x,y) ∈ ∂Ω . (8)

The exact solution of the above problem is given by

u(x,y) = sin(πx)sinh(y)+ cosh(2x)cos(2πy). (9)

and as depicted in figure 1 has rather strong variations along both axis allowing us
to qualitative examine the effectiveness of our system. For this, we decompose the
PDE domain Ω into the eight non-overlapping subdomains defined by interface lines
drwan at x1 = 0 and y1 =−0.5, y2 = 0 and y3 = 0.75, we solve the PDE subproblems
defined by subdomains Ω1,0, Ω0,1 and Ω2,1 and we plot their computed solutions ...

Page:10 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

IMPLEMENTING HYBRID PDE SOLVERS 11

sin(pi*x)*sinh(y) + cosh(2*x)*cos(2*pi*y)
2
0

-2

-1

-0.5

0

0.5

1

x

-1 -0.5 0 0.5 1
y

-4
-3
-2
-1
0
1
2
3
4

u

Fig. 1 True solution of the PDE problem defined by (7)–(8).

4.2 3-dimensional Experiments

We consider a slitely modified the PDE problem considered in the previous section
as follows.

∂ 2u
∂x2 +

∂ 2u
∂y2

∂ 2u
∂ z2 = x+ y+ z ∀(x,y) ∈Ω ≡ [−1,1]3, (10)

subject to the Dirichlet boundary conditions

u(x,y,z) = g(x,y,z) ∀(x,y) ∈ ∂Ω , (11)

where the right hand side function g is selected so that the exact solution of the above
problem (10)–(11) is given by the equation

u(x,y,z) = exp(
√

2πx)sin(π(y+ z))+
1
6
(
x3 + y3 + z3) . (12)

and depicted in figure 2.
In a similar to the 2-dimensional case we decompose the domain Ω into 16

non-overlapping subdomains defined by the intreface planes x1 = 0 and y1 =−0.5,
y2 = 0, y3 = 0.75 and z1 =−0.2. ...

Page:11 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

12 Manolis Vavalis and George Sarailidis

Fig. 2 True solution of the PDE problem defined by (10)–(11).

5 Conclusions and Prospects

Our objective is to increase our intuition about the proposed algorithm rather than
to attempt to prove new results or even provide a computational tool for real world
problems.

extended to more general operators [54] possibly with singularities [20] operators
of higher order [22, 12] deal with Neumman or mixed boundary conditions [49, 50,
51] non-rectangular domains [?] and virtualy to any problem with known Green’s
function. to time depended problems [13, 48, 19]

Furthermore, the implementation of high performance Monte Carlo solvers on
modern architectures and emerging computational platforms (e.g. many-core systems,
GPUs and streaming computing.

Above all our study is based on a new line of reasoning that provides new intuition
about the dynamics of Monte Carlo simualtions.

Monolithic and such

Acknowledgements This research has been co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program Education and Lifelong
Learning of the National Strategic Reference Framework (NSRF) - Research Funding Program:
Thales. Investing in knowledge society through the European Social Fund.

References

1. Acebrón, J., Busico, M., Lanucara, P., Spigler, R.: Probabilistically induced domain decompo-
sition methods for elliptic boundary-value problems. Journal of Computational Physics 210(2),
421–438 (2005)

2. Acebrón, J., Busico, M., Lanucara, P., Spigler, R.: Domain decomposition solution of elliptic
boundary-value problems via Monte Carlo and quasi-Monte Carlo methods. SIAM Journal of
Scientific Computing 27(2), 440–457 (2006)

3. Acebrón, J., Durán, R., Rico, R., Spigler, R.: A new domain decomposition approach suited
for grid computing. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 4699 LNCS, 744–753 (2007).
URL http://www.scopus.com/inward/record.url?eid=2-s2.0-38049032039&partnerID=40

4. Acebrón, J., Rodrı́guez-Rozas, A., R., S.: Domain decomposition solution of nonlinear two-
dimensional parabolic problems by random trees. Journal of Computational Physics 228(15),
5574–5591 (2009). URL http://www.scopus.com/inward/record.url?eid=2-s2.0-67349224351&
partnerID=40

5. Acebrón, J., Spigler, J.: A fully scalable parallel algorithm for solving elliptic partial differential
equations. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4641 LNCS, 727–736 (2007). URL http:
//www.scopus.com/inward/record.url?eid=2-s2.0-38049187637&partnerID=40

6. Acebrón, J., Spigler, R.: Scalability and performance analysis of a probabilistic domain decom-
position method. Lecture Notes in Computer Science (including subseries Lecture Notes in

Page:12 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

http://www.scopus.com/inward/record.url?eid=2-s2.0-38049032039&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-67349224351&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-67349224351&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-38049187637&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-38049187637&partnerID=40

IMPLEMENTING HYBRID PDE SOLVERS 13

Artificial Intelligence and Lecture Notes in Bioinformatics) 4967 LNCS, 1257–1264 (2008).
URL http://www.scopus.com/inward/record.url?eid=2-s2.0-45449108802&partnerID=40

7. Alves, C., Cruzeiro, A.: Monte Carlo simulation of stochastic differential systems - a geometri-
cal approach. Stochastic Processes and their Applications 118(3), 346–367 (2008)

8. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial
differential equations with random input data. SIAM Journal on Numerical Analysis 45(3),
1005–1034 (2007)

9. Babuska, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with
uncertain coefficients by the finite element method: The stochastic formulation. Computer
Methods in Applied Mechanics and Engineering 194(12-16), 1251–1294 (2005)

10. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—A general-purpose object-oriented finite
element library. ACM Trans. Math. Softw. 33(4), 24–?? (2007). DOI http://doi.acm.org/10.
1145/1268776.1268779

11. Bignami, A., Cupini, E.: Monte Carlo method for finite difference equations of elliptic type in
a multiregion domain. J. Comput. Appl. Math. 8(2), 87–92 (1982)

12. Buchmann, F.M., Petersen, W.P.: An exit probability approach to solving high dimensional
dirichlet problems. SIAM Journal of Scientific Computing 28(3), 1153–1166 (2006)

13. Carlsson, J.: A backward Monte Carlo method for solving parabolic partial differential equa-
tions. arXiv:math/0010118v1 (2000)

14. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathe-
matischen physik. Mathematische Annalen 100, 32–74 (1928)

15. DeLaurentis, J.M., Romero, L.A.: A Monte Carlo method for Poisson’s equation. J. Comput.
Phys. 90(1), 123–140 (1990). DOI http://dx.doi.org/10.1016/0021-9991(90)90199-B

16. Dimov, I.T., Gurov, T.V.: Estimates of the computational complexity of iterative Monte Carlo
algorithm based on Green’s function approach. Mathematics and Computers in Simulation
47(2-5), 183–199 (1998)

17. Dimov, I.T., Papancheva, R.Y.: Green’s function Monte Carlo algorithms for elliptic problems.
Mathematics and Computers in Simulation 63(6), 587–604 (2003)

18. Edwards, K., Hogg, A.: Methods of improving analogue Monte Carlo solutions of elliptic
partial differential equations 1, 664–673 (1967)

19. Farnoosh, R., Ebrahimi, M.: Monte Carlo method via a numerical algorithm to solve a parabolic
problem. Applied Mathematics and Computation 190(2), 1593–1601 (2007)

20. Given, J., Hwang, C.: Edge distribution method for solving elliptic boundary value problems
with boundary singularities. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics
68(4 2), 461,281–461,286 (2003)

21. Gobet, E., Maire, S.: Sequential Monte Carlo domain decomposition for the Poisson equation.
In: 17th IMACS World Congress, Scientific Computation, Applied Mathematics and Simulation
(2005). URL http://maire.univ-tln.fr/fichiersweb/T1-I-62-0995%20(1).pdf

22. Gopalsamy, K., Aggarwala, B.: Monte Carlo methods for some fourth order partial differential
equations. Z Angew Math Mech 50(12), 759–767 (1970)

23. Griebel, M., Schweitzer, M.A.: A particle-partition of unity method for the solution of elliptic,
parabolic, and hyperbolic PDEs. SIAM Journal of Scientific Computing 22(3), 853–890 (2001)

24. Heinrich, S.: The randomized information complexity of elliptic PDE. Journal of Complexity
22(2), 220–249 (2006)

25. Hoshino, S., Ichida, K.: Solution of partial differential equations by a modified random walk.
Numerische Mathematik 18(1), 61–72 (1971)

26. Karaivanova, A., Hongmei, C., Gurov, T.: Quasi-random walks on balls using c.u.d. sequences.
pp. 165–172. Springer (2007)

27. Lapeyre, B., Pardoux, E., Sentis, R.: Introduction to Monte Carlo Methods for Transport and
Diffusion Equations. 0xford University Press (2003). Translated by A. Craig and F. Craig

28. Lee, S., Wolberg, G., Shin, S.: Scattered data interpolation with multilevel B-splines. IEEE
Transactions on Visualization and Computer Graphics 3(3), 228–244 (1997). URL http:
//www.scopus.com/inward/record.url?eid=2-s2.0-0031190350&partnerID=40. Cited By (since
1996) 175

Page:13 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

http://www.scopus.com/inward/record.url?eid=2-s2.0-45449108802&partnerID=40
http://maire.univ-tln.fr/fichiersweb/T1-I-62-0995%20(1).pdf
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031190350&partnerID=40
http://www.scopus.com/inward/record.url?eid=2-s2.0-0031190350&partnerID=40

14 Manolis Vavalis and George Sarailidis

29. Makarov, R.N.: Solution of boundary value problems for nonlinear elliptic equations by the
Monte Carlo method. Russian Journal of Numerical Analysis and Mathematical Modelling
14(5), 453–467 (1999)

30. Mascagni, M.: Deterministic Monte Carlo methods and parallelism. pp. 249–258 (2003)
31. Mascagni, M., Hwang, C.: ε-Shell error analysis for “Walk On Spheres” algorithms. Mathe-

matics and Computers in Simulation 63(2), 93–104 (2003)
32. Mascagni, M., Karaivanova, A., Li, Y.: A quasi-Monte Carlo method for elliptic partial differ-

ential equations. Monte Carlo Methods and Applications 7, 283–294 (2001)
33. Matthies, H.G., Keese, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial

differential equations. Computer Methods in Applied Mechanics and Engineering 194(12-16),
1295–1331 (2005)

34. Metropolis, N., Ulam, S.: The Monte Carlo method. Journal of the American Statistical
Association 44, 335–341 (1949)

35. Mikhailov, G.A.: Recurrent formulae and the Bellman principle in the Monte Carlo method.
Russian Journal of Numerical Analysis and Mathematical Modelling 9(3), 281–289 (1994)

36. Mikhailov, G.A.: Solving the Dirichlet problem for nonlinear elliptic equations by the Monte
Carlo method. Siberian Mathematical Journal 35(5), 967–975 (1994)

37. Mikhailov, G.A., Lukinov, V.L.: Probability representations and the Monte Carlo method for
solving equations with powers of elliptic operators. Doklady Mathematics 67(3), 423–425
(2003)

38. Milstein, G., Tretyakov, M.: The simplest random walks for the Dirichlet problem. Theory of
Probability and its Applications 47(1), 53–68 (2003)

39. Muller, M.: Some continuous Monte Carlo methods for the Dirichlet problem. The Annals of
Mathematical Statistics 27(3), 569–589 (1956)

40. Papancheva, R.J., Dimov, I.T., Gurov, T.V.: A new class of grid-free Monte Carlo algorithms
for elliptic boundary value problems, vol. 2542, pp. 132–139 (2003)

41. Papancheva, R.Y.: Parallel realization of grid-free Monte Carlo algorithm for boundary value
problems, Lecture Notes in Computer Science, vol. 3743, pp. 181–188. Springer (2006)

42. Privault, N.: Potential theory in classical probability. In: U. Franz, M. Schurmann (eds.)
Quantum Potential Theory, Lecture Notes in Mathematics, vol. 4310, pp. 3–59. Springer (2008)

43. Rayleigh, L.: On James Bernoullis theorem in probabilities. Philos. Mag. 47, 246–251 (1899)
44. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA (2005)
45. Roman, L., Sarkis, M.: Stochastic Galerkin method for elliptic SPDEs: A white noise approach.

Discrete and Continuous Dynamical Systems - Series B 6(4), 941–955 (2006)
46. Sacadura, J., Al-Abed, A.: Analysis of time-dependent cylindrical problems using Monte Carlo.

ASME, Transactions, Journal of Heat Transfer (ISSN 0022-1481) 105, 931–933 (1983)
47. Sadeh, E., Franklin, M.: Monte Carlo solution of partial differential equations by special

purpose digital computer. IEEE Transactions on Computers 23(4), 389–397 (1974). DOI
http://doi.ieeecomputersociety.org/10.1109/T-C.1974.223954

48. Sadiku, M., Akujuobi, C., Musa, S., Nelatury, S.: Analysis of time-dependent cylindrical
problems using Monte Carlo. Microwave and Optical Technology Letters 49(10), 2571–2573
(2007)

49. Sadiku, M., Gu, K.: New Monte Carlo method for -Neumann problems pp. 92–95 (1996)
50. Simonov, N.: Monte Carlo methods for solving elliptic equations with boundary conditions

containing the normal derivative. Doklady Mathematics 74(2), 656–659 (2006)
51. Simonov, N.: Random walks for solving boundary-value problems with flux conditions. pp.

181–188. Springer (2007)
52. Tsai, Y., Wang, C., Chang, C., Cheng, Y.: Tunable bounding volumes for Monte Carlo applica-

tions, Lecture Notes in Computer Science, vol. 3980, pp. 171–180. Springer (2006)
53. Vajargah, B., Vajargah, K.: Monte Carlo method for finding the solution of Dirichlet partial

differential equations. Applied Mathematical Sciences 1(10), 453–462 (2007)
54. Vrbik, J.: Monte Carlo simulation of the general elliptic operator. J. Phys. A: Math. Gen. 20(3),

2693–2697 (1987)

Page:14 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

IMPLEMENTING HYBRID PDE SOLVERS 15

55. Wan, X., Karniadakis, G.: Solving elliptic problems with non-Gaussian spatially-dependent
random coefficients. Computer Methods in Applied Mechanics and Engineering 198(21–26),
1985–1995 (2009). DOI DOI:10.1016/j.cma.2008.12.039. URL http://www.sciencedirect.com/
science/article/B6V29-4VFK7SW-2/2/97c813d79f0e5f6bec99789f23409016. Advances in
Simulation-Based Engineering Sciences - Honoring J. Tinsley Oden

Page:15 job:main macro:svmult.cls date/time:8-Sep-2014/14:42

http://www.sciencedirect.com/science/article/B6V29-4VFK7SW-2/2/97c813d79f0e5f6bec99789f23409016
http://www.sciencedirect.com/science/article/B6V29-4VFK7SW-2/2/97c813d79f0e5f6bec99789f23409016

	IMPLEMENTING HYBRID PDE SOLVERS
	Introduction
	Mathematical Background
	Monte Carlo methods for linear elliptic PDES
	Stochastic/deterministic elliptic PDE solvers
	Related Work

	Implementation and Usage
	Basic implementation
	Parallel implementation on Central Processing Units (CPUs) and Graphics Proccesing Units (GPUs)
	Web Implementation through web services

	Numerical Experiments
	2-dimensional Experiments
	3-dimensional Experiments

	Conclusions and Prospects
	References

