
Contents lists available at AMCL’s Digital Library

NumAn2014 Conference Proceedings
Digital Library Triton : http://lib.amcl.tuc.gr

Serial and Parallel Implementation of an Interface
Relaxation Method

Aigli Korfiati1, Panagiota Tsompanopoulou2, and Spiros Likothanassis1

1 Dep. of Computer Eng. and Informatics, University of Patras, Patras, Greece
2 Dep. of Electrical and Computer Eng., University of Thessaly, Volos, Greece
{korfiati, likothan}@ceid.upatras.gr, yota@inf.uth.gr

Abstract. In the present paper an Interface Relaxation (IR) method, GEO, is
implemented in FEniCS platform as a first step towards creating a complete mul-
tiphysics / multidomain problem solving environment. For the evaluation of the
particular implementation, two different PDE problems are considered. A paral-
lel implementation of the IR methodology using FEniCS is presented, as well as
its performance comparison to the serial implementation. The performance re-
sults prove the significance of the parallel implementation towards the solution of
large multiphysics / multidomain problems.

1 Introduction

The solution of large and composite Partial Differential Equations (PDE)s is a problem
primarily faced with domain decomposition techniques [1, 2]. This approach involves
decomposing at the linear algebra level after discretizing the domain and the equation
with the desired method, i.e., Finite Differences (FD) or Finite Elements (FE). The main
characteristic of these methods is the non flexibility on the selection of different method
for each subdomain of the initial problem. Interface Relaxation (IR) methodology is an
interesting alternative [3–5]. Here, the PDE domain is decomposed into subdomains,
derived by the physics or for parallelization purposes while initial guesses are set on the
interfaces between the subdomains. The subproblems are solved and new values on the
interfaces are computed by particular IR methods (forcing the correct conditions for the
problem) iteratively until convergence is succeeded.
Multidomain / multiphysics problem solving environments (PSE) implementing the in-
terface relaxation methodology should be able to accommodate and incorporate a vari-
ety of existing PDE solvers and IR methods. These solvers should provide a minimum
functionality including domain and PDE definition, mesh/grid generator, discretization
scheme, evaluation of the solution and its derivatives at any point of the domain includ-
ing the boundaries/interfaces. A complete list of existing software for the solution of
differential equations can be found in [6].
According to our knowledge, a small number of implementations of IR methods can
be found in the literature. Matlab has been used for seven IR methods, concerning
one-dimensional problems [3] and for one concerning two-dimensional problems [7],
not forming, though, a multidomain / multiphysics PSE. Two of these methods have
been implemented in SciAgents Framework [8, 9] for two-dimensional problems. This

.

OpenAccess

Proceedings of the 6th International Conference on Numerical Analysis, pp 167-173

ISBN: 978-960-8475-22-9 ©AMCL/TUC http://lib.amcl.tuc.gr/handle/triton/49



implementation exploits the parallelism inherent in IR methodology using the Agents
computing paradigm over a network of heterogeneous workstations. A second approach
was accomplished with BOND agent middleware, [10]. Both SciAgents and BOND
implementation used PELLPACK for their PDE solvers. GasTurbnLab [11, 12] is the
latest complete approach. It is a multidisciplinary PSE for the gas turbine engine design
based on the Grasshopper agent middleware and FORTRAN and C libraries. Last, a
MATLAB toolbox that solves multidomain / multiphysics PDE problems is under con-
struction, while a first stable version is presented in [13]. These PSEs highly depend on
the agent paltforms and PELLPACK, revealing the need of a new implementation free
of such constraints.
In this paper, a geometric (GEO) contraction based IR method [7] is implemented along
with FEniCS. FEniCS [14] is a collection of free software for automated, efficient so-
lution of differential equations and it is reliable, efficient, free and promising to be
supported. Getting data on the interfaces and forcing new data as updated values for the
boundary conditions is the main challenge of the IR methodology implementation and
contribution of this paper. A parallel implementation of the GEO method using FEniCS
and RabbitMQ (message-oriented middleware [15]), and its performance comparison
to the serial implementation is presented in this paper too. The comparison of execution
times for various problem sizes of a model problem, promises the high significance of
the parallel GEO implementation towards the solution of big multiphysics / multido-
main problems.

In Section 2 FEniCS platform and RabbiMQ tool are shortly described, while Sec-
tion 3 contains the presentation of the IR methodology. Section 4 presents the imple-
mentation issues, while Section 5 contains the numerical results. Finally, in Section 6
the concluding remarks are presented.

2 Foundation of the Problem

Aiming at the incorporation of the GEO method, along with other IR methods, in a
complete problem solving environment concerning multidomain / multiphysics prob-
lems it was implemented in FEniCS. FEniCS provides classes and methods to spec-
ify the problem’s subdomains properties (i.e., domain’s geometry, PDE operator and
boundary/interface conditions). Its methods can also generate and/or refine meshes (tri-
angular elements) for each subdomain, solve the local PDE problems and show the
computed results in the global domain and on the interfaces.
Sparse LU decomposition is used as the default solver in FEniCS programs. This is
because it is robust for a few thousand unknowns in the equation system. However,
sparse LU decomposition becomes slow and memory demanding in large problems.
So FEniCS provides iterative methods such as preconditioned Krylov solvers, as well,
which are faster and require much less memory. A complete list of the available Krylov
solvers and preconditioners can be found in FEniCS documentation [14]. The actual
solvers implementations that are brought into action depend on the choice of a linear
algebra package. FEniCS interfaces several linear algebra packages, called linear alge-
bra backends in FEniCS terminology. PETSc is the default choice, otherwise uBLAS,

168 Serial & Parallel Implementation of an Interface Relaxation Method

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference



Epetra (Trilinos) and MTL4 are other supported backends.
For the parallel implementation on the FEniCS platform, RabbitMQ was used. Rab-
bitMQ is a lightweight, reliable, scalable and portable message broker. It gives appli-
cations a common platform to send and receive messages. RabbitMQ runs on all major
operating systems and is easy to use. It supports a huge number of developer platforms
among which Python that is the FEniCS platfom. RabbitMQ is based on the Advanced
Message Queuing Protocol (AMQP). AMQP is a message protocol that deals with pub-
lishers and consumers. The publishers produce the messages; the consumers pick them
up and process them. In the present paper, a Remote Procedure Call (RPC) system was
constructed, based on RabbitMQ since there is a great need for communication during
the parallel solution of the PDE problems.

3 IR methodology and GEO

Interface Relaxation methods, including GEO, were presented and studied in [3–5].
Consider the composite differential problem defined by

Lu = f in ⌦ \ @⌦, u = ub on @⌦ (1)

where ub is a prescribed function on the boundary, ⌦ ⌘ Sp
i=1

⌦i and ⌦i, i =
1, · · · , p are open sets such that

Tp
i=1

⌦i = ;. L is a differential operator which might
be different in each subdomain ⌦i. Considering IR methodology, the above problem
can be replaced with the following loosely coupled system of differential problems.

Liui = fi in ⌦i

Giju = 0 on (@⌦i \ @⌦j) \ @⌦ 8j 6= i, u = ui
b on @⌦i \ @⌦

where for i = 1, · · · , p, Li, fi and ui
b are the restrictions of L, f and ub respectively

on each subdomain ⌦i and Gij is a condition on the interface between subdomains ⌦i

and ⌦j which enforces proper coupling. This coupling is responsible for preserving the
physical properties of the original problem (i.e., continuity, smoothness or jumping).
The PDE operators and the coupling can be of any kind. Nevertheless, this study is lim-
ited to the most common case of second order elliptic differential equations with smooth
global solution. Thus continuity of the solution and its first (normal) derivative should
be imposed on the interfaces. GEO is such a method and its convergence analysis is
presented in [7]. The new relaxed values on the interface points are obtained by adding
to the old ones a geometrically weighted average of the normal boundary derivatives of
the adjacent subdomains. Specifically,

u(k+1)(x) = u(k)(x) � ⇢

 
@u(k)

L (x)

@n
� @u(k)

R (x)

@n

!
, k = 1, 2, · · · (2)

where k is the iteration, u is the computed solution on the interface point x, @u
(k)
L

(x)

@n ,

�@u
(k)
R

(x)

@n are the values of the outward normal derivatives in the two adjacent subdo-
mains and ⇢ is a relaxation parameter used to accelerate the convergence.

Korfiati A., Tsompanopoulou P. and Likothanassis S. 169

Proceedings of NumAn2014 Conference Sept 2-5, Chania, Crete, Greece



4 The implementation

GEO is implemented as a FEniCS program written in the Python programming lan-
guage. The DOLFIN [16] library is used to import classes that help us create the prob-
lem’s subdomains and generate meshes (triangular elements) on these subsomains. We
then specify and apply the boundary conditions, as well as the initial guesses on the
interfaces of the subdomains. The PDE problem has to be expressed as a variational
problem and then defined in the program. After the computation of the solution, the
computation of the gradient is also performed.
As mentioned above, creating the appropriate functions for getting the values of the
solution and the gradient on the interface points (boundaries of the subproblems), com-
puting the new relaxed values and passing them back to the subproblems as updated
values for the interfaces was the main challenge of GEO implementation. The relaxed
values on an interface point x are computed as in (2). Once the relaxed values of the
interfaces are passed back to the subdomains, a new iteration begins.
Since GEO is inherently parallel, in its parallel implementation, each node solves one
subdomain. The computed solutions and gradients on the interface points from each
node (solving a subdomain which has more than one adjacent subdomains) are sent as
a RabbitMQ message to the node that handles the adjacent subdomain. This node com-
putes the new relaxed interface points values, which serve as input to its new iteration
and sends them back as a RabbitMQ message, so as for the next iteration to begin in
the other node, as well. This schema not involving separate nodes to treat the inter-
faces serves for the reduction of the number of the messages exchanged, in an effort to
minimize the total communication time.

5 Experiments and evaluation

In order to examine the method’s correctness and the performance of the implementa-
tion, the following elliptic problem defined in [7] is considered:

Lu (x, y) ⌘ �ru (x, y) + �2u (x, y) = f (x, y) , (x, y) 2 ⌦

u (x, y) = ub (x, y) , (x, y) 2 @⌦

with f (x, y) and ub (x, y) selected such that the true solution is:

u (x, y) = ey(x+4)x(x � 1)(x � 0.7)y(y � 0.5) (3)

In particular, two different PDE problems consisting of the above differential equation
and boundary conditions and the two different domains depicted in Fig. 1 are studied.
The interface points of the uniform problem are at x

1

= 1

3

and x
2

= 2

3

and of the
non-uniform at x

1

= 1

5

and x
2

= 1

2

and �2 = 2. The experiments are performed for
various values of the discretization parameter h, which is considered equal in both x
and y direction. The resulting grid sizes are presented in Table 1, while the number of
interface points in each case is equal to the number of points in y direction of the middle
subdomain, i.e., increases from 6 to 641 points for both uniform and non-uniform cases.
In the uniform case the left domain is the largest problem of the three with significant

170 Serial & Parallel Implementation of an Interface Relaxation Method

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference



Fig. 1. Uniform (left) and Non-uniform (right) problems domains

Table 1. Considered test cases with their descritization step and grid size for left, middle and
right domain for the Uniform and the Non-uniform problems.

Uniform problem Non-uniform problem
case h left middle right left middle right

c1 0.1 4x21 4x6 4x11 3x21 4x6 6x11
c2 0.05 8x41 8x11 8x21 5x41 7x11 11x21
c3 0.025 14x81 14x21 14x41 9x81 13x21 21x41
c4 0.0125 28x161 28x41 28x81 17x161 25x41 41x81
c5 0.00625 55x321 55x81 55x161 33x321 49x81 81x161
c6 0.003125 108x641 108x161 108x321 65x641 97x161 161x321
c7 0.0015625 214x1281 214x321 214x641 129x1281 193x321 321x641

difference of the others. In the non-uniform case, the right domain is the one with the
heaviest task. All interfaces have the same number of points and therefore are of equal
workload.

The convergence history is depicted in Fig. 2. Specifically, in the left graph, the
max norm of the relative difference of successive iterants vs the number of iterations is
shown for the interface x

1

= 1

3

of the uniform problem for h = 0.1, 0.05, 0.025. As IR
methodology promises, the rate of convergence is independent of the local discretization
resolution h. For the same problem and interface, the exact and the computed solutions
are plotted, in the right graph, for iterations 1, 3, 6, 10 with h = 0.05. Similar results
(not depicted due to space reasons) hold for all interfaces and both problems. In Table 2
the total execution times of the serial and the parallel implementation are presented. The
serial execution is performed in a node with 4 Intel(R) Xeon(R) CPU E5-2620, 2.00GHz
processors and 2GB RAM and the parallel in 3 nodes of the same configuration, in the
Cloud Infrastructure of the Pattern Recognition Lab (CEID-UP).
The time of the serial executions contains the total time of computations of the three
domains and two interfaces for 16 iterations. In the parallel executions, the total time
corresponds to the time for the solution of the largest of the three subdomains along with
the interface computations’ time and the necessary communication, for 16 iterations.
The test cases were set to explore the behavior of the parallel implementation and not
for accuracy purposes. As the grids become finer, the work load increases significantly

Korfiati A., Tsompanopoulou P. and Likothanassis S. 171

Proceedings of NumAn2014 Conference Sept 2-5, Chania, Crete, Greece



Fig. 2. Relative successive differences (left) and exact and computed solutions on interface points
(right)

Table 2. Total execution times of serial and parallel implementation

c1 c2 c3 c4 c5 c6 c7

Uniform Problem
Serial 1.900 2.664 5.216 12.883 40.883 178.217 996.348
Parallel 3.495 4.068 6.140 13.595 39.808 154.633 723.731

Non Uniform Problem
Serial 2.294 2.854 5.111 13.251 37.266 179.561 1057.644
Parallel 3.720 4.264 5.732 10.633 34.172 126.607 918.838

while the communication time increase with an order of magnitude less. This is the
main reason that gain is noticed for fine grids.

6 Conclusions

This paper presents both serial and parallel implementation of GEO in FEniCS, as a first
effort to build an environment for the solution of multidomain / multipysics problems.
Parallel implementation seems to be invaluable, especially for large problems.
Nearby, further experimentation with more complex mutidomain / multiphysics PDEs,
even finer grids and different solvers on each subdomain is planned. More IR methods
are to be implemented as well. Communication issues on different machines are un-
der study, while high and low level parallelism will be exploited too. Next steps also
include creating a functionality in FEniCS, where the users will be able to: (i) define
complex multiphysics PDEs, (ii) select the appropriate PDE solvers for the domains
and IR methods for the intefaces and (iii) visualize the computed solution of the global
problem.

Acknowledgments

The present research work has been co-financed by the European Union (European
Social Fund ESF) and Greek national funds through the Operational Program Educa-
tion and Lifelong Learning of the National Strategic Reference Framework (NSRF) -

172 Serial & Parallel Implementation of an Interface Relaxation Method

Sept 2-5, Chania, Crete, Greece Proceedings of NumAn2014 Conference



Research Funding Program: THALIS. Investing in knowledge society through the Eu-
ropean Social Fund (MIS 379416).

References

1. Chan, T.F., Mathew, T.P.: Domain decomposition algorithms, in: Acta Numerica 1994, Cam-
bridge University Press, Cambridge, 61-143 (1994)

2. Keyes, D., Gropp, W.: A comparison of domain decomposition techniques for elliptic partial
differential equations and their parallel implementation. SIAM J. Sci. Statist. Comput. 8 s166-
s202 (1987)

3. Rice, J. R., Tsompanopoulou, P., Vavalis, E.: Interface relaxation methods for elliptic differ-
ential equations. Applied Numerical Mathematics 32 2, 219–245 (2000)

4. Rice, J.R., Tsompanopoulou, P. Vavalis, E.A.: Fine Tunning Interface Relaxation Methods for
Elliptic Differential Equations. Applied Numerical Mathematics, 43(4), 459–481 (2002)

5. Tsompanopoulou, P., Vavalis, E.: An Experimental Study of Interface Relaxation Methods for
Composite Elliptic Differential Equations. Applied Mathematical Modelling, 32 1620–1641
(2008)

6. Young, R., MacPhedran, I. 2006: Internet Finite Element Resources. Online. Available:
http : //homepage.usask.ca/ ijm451/finite/fe resources/fe resources.html (ac-
cessed July 11, 2014)

7. Tsompanopoulou, P., Vavalis, E.: Analysis of an interface relaxation method for composite
elliptic differential equations. Journal of Computational and Applied Mathematics 226 2, 370–
387 (2009)

8. Drashansky T.: An Agent-Based Approach to Building Multidisciplinary Problem Solving
Environments. PhD Thesis, Purdue University, Computer Science Department, (1996)

9. Rice, J.R., Tsompanopoulou, P., Vavalis, E.A.: SciAgents Tool: User’s Guide. Tech. Rpt. TR-
98-043, Dept. Computer Sciences, Purdue Univ., (1998)

10. Bölöni, L., Marinescu, D.C., Rice, J.R., Tsompanopoulou, P., Vavalis, E.A.: Agent Based
Scientific Simulation and Modelling. Concurancy: Practice and Experience, 12, 845–861
(2000)

11. Markus, S., Houstis, E., Catlin, A., Rice, J., Tsompanopoulou, P., Vavalis, E., Gottfried,
D., Su K., Balakrishnan, G.: An Agent-Based Netcentric Framework for Multidisciplinary
Problem Solving Environments. International Journal of Computational Engineering Science,
1, 33–60 (2000)

12. Houstis, E.N., Catlin, A.C., Tsompanopoulou, P., Gottfried, D., Balakrishnan, G., Su, K.,
Rice, J.R.: GASTURBNLAB: A Multidisciplinary Problem Solving Environment for Gas
Turbine Engine Design on a Network of Non-Homogeneous Machines. J. of Comp. and Ap-
plied Mathematics, 149(1), 83-100 (2002)

13. Chalkias, C.: Implementation of a Distributed System for the Solution of MultiDo-
main / MultiPhysics Problems, Diploma Thesis, (2013), Dep. of Electrical and Com-
puter Eng., Univ. of Thessaly. Online. Available: http : //www.inf.uth.gr/wp �
content/uploads/formidable/Chalkias konstantinos.pdf

14. Logg, A., Mardal, K. A., Wells, G. N. et al.: Automated Solution of Differential Equations
by the Finite Element Method. Springer, (2012)

15. Rabbitmq, 2014. Online. Available: www.rabbitmq.com/documentation.html (ac-
cessed July 11, 2014).

16. Logg, A., Wells G. N.: DOLFIN: Automated Finite Element Computing. ACM Transactions
on Mathematical Software 37, 2 (2010)

Korfiati A., Tsompanopoulou P. and Likothanassis S. 173

Proceedings of NumAn2014 Conference Sept 2-5, Chania, Crete, Greece


