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Abstract. The initial-boundary value problem (ibvp) for the cubic nonlinear Schrödinger

(NLS) equation on the half-line with data in Sobolev spaces is analysed via the formula

obtained through the unified transform method, and a contraction mapping approach.

First, the linear Schrödinger (LS) ibvp with initial and boundary data in Sobolev spaces

is solved and the basic space and time estimates of the solution are derived. Then, the

forced LS ibvp is solved for data in Sobolev spaces, on the half line [0,∞) for the spatial

variable and on an interval [0, T ], 0 < T <∞, for the temporal variable, by decomposing

it into a free ibvp and a forced ibvp with zero data, and its solution is estimated appro-

priately. Furthermore, using these estimates, well-posedness of the NLS ibvp with data

(u(x, 0), u(0, t)) in Hs
x(0,∞)×H

(2s+1)/4
t (0, T ), s > 1/2, is established via a contraction

mapping argument. In addition, this work places Fokas’ unified transform method for

evolution equations into the broader Sobolev spaces framework.

1. Introduction

A novel approach for solving initial-boundary value problems (ibvps) for linear and

integrable nonlinear evolution equations was introduced in 1997 [F1]. This approach,

which is known as the unified transform method (UTM) or the Fokas transform method,

was motivated in the context of integrable nonlinear equations and can be seen as the

ibvp analogue of the celebrated Inverse Scattering Transform method of Gardner, Greene,

Kruskal and Miura [GGKM], which was introduced in 1967 for initial value problems.

However, it was immediately understood that the UTM has significant implications in

the case of linear ibvps. In particular, it can be used to produce novel solution formulae

which involve certain variations of the Fourier transform integrated along contours that

lie in the complex spectral (Fourier) plane.

For those problems that can be solved via the classical transform method, the UTM

formulae can be reduced to the well-known classical solutions via the use of Cauchy’s

theorem and contour deformations. Nevertheless, due to the occurrence of the complex

contours of integration the novel formulae are uniformly convergent at the boundary of

the domain. This feature, in addition to various analytical advantages, yields efficient

techniques of numerical integration (it should be noted that any formula obtained via the

classical transform method will suffer from lack of uniform convergence for inhomogeneous

boundary conditions). The most important advantage of the UTM, however, is that it
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2 The Nonlinear Schrödinger Equation on the Half-Line

can be employed for solving ibvps of arbitrary order and arbitrary boundary conditions

for which the classical techniques often fail (e.g. when the problem is non-self-adjoint). In

this respect, for linear ibvps the UTM can be regarded as the counterpart of the Fourier

transform method, in the sense that it produces the solution in terms of the “natural”

transforms that are intrinsic to the ibvp under study. For a comparison of the UTM

against the classical techniques, see [FSp] and [DTV].

The first purpose of this work is to explore the validity of the UTM formulae for data in

Sobolev spaces. As the derivation of the UTM formulae for linear ibvps is only done at the

level of “nice” initial and boundary data (e.g. of Schwartz class), we wish to investigate the

validity of these formulae for larger classes of data, which belong to appropriate Sobolev

spaces. In particular, we carry out this investigation for the linear Schrödinger (LS)

equation formulated on the half-line:

iut + uxx = 0, x ∈ (0,∞), t ∈ (0, T ), T < 1, (1.1a)

u(x, 0) = u0(x) ∈ Hs
x(0,∞), x ∈ [0,∞), (1.1b)

u(0, t) = g0(t) ∈ H
2s+1

4
t (0, T ), t ∈ [0, T ]. (1.1c)

Here, the spaces Hs
x(0,∞) and H

2s+1
4

t (0, T ) are defined as restrictions of the corresponding

spaces over R according to the following definition.

Definition 1.1. For s ∈ R and a, b ∈ R (possibly infinite) with b > a, we define the

Sobolev space Hs(a, b) by

Hs(a, b) =
{
f : f = F

∣∣
(a,b)

where F ∈ Hs(R)
}

(1.2)

equipped with the norm

‖f‖Hs(a,b)
.
= inf

F∈Hs
x(R)
‖F‖Hs(R) , (1.3)

where the Sobolev norm on R is defined via the Fourier transform of F by

‖F‖Hs(R)
.
=

(∫
ξ∈R

(
1 + ξ2

)s ∣∣F̂ (ξ)
∣∣2dξ) 1

2

. (1.4)

For s > 1
2 , ibvp (1.1) should be supplemented with the compatibility condition

u0(0) = g0(0), (1.5)

which follows from the fact that u0(0) and g0(0) must both be equal to u(0, 0). Moreover,

if s > 5
2 then LS implies the following additional conditions for the data at x = t = 0:

g
(j)
0 (0) = iju

(2j)
0 (0), 1 6 j <

2s− 1

4
. (1.6)

The UTM can be applied to ibvp (1.1) as follows. Assuming that there exists a solution

u and rewriting (1.1a) as a one-parameter family of divergence forms yields via Green’s

identity a relation between the Fourier transform û of the solution and appropriate trans-

forms of boundary values. This relation, called the global relation, can then be inverted to

produce an integral representation for u in terms of the initial condition (1.1b), the bound-

ary condition (1.1c), and the unknown boundary value ux(0, t). What is more, deforming
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the contours of integration to appropriate contours in the complex spectral plane and us-

ing certain symmetries of the global relation, it is possible to eliminate the term involving

the unknown boundary value by invoking Cauchy’s theorem and Jordan’s lemma.

Carrying out the above described computations, which can be found in every detail in

[F2], we obtain the following UTM solution formula for the LS ibvp (1.1):

u(x, t) =
1

2π

∫
R
eikx−ik

2tû0(k)dk − 1

2π

∫
∂D+

eikx−ik
2t
[
û0(−k)− 2kg̃0(k

2, T )
]
dk, (1.7)

where

û0(k) =

∫ ∞
0

e−ikxu0(x)dx, k ∈ C−
.
= {k ∈ C : Imk ≤ 0}, (1.8)

g̃0(k
2, T ) =

∫ T

0
eik

2t′g0(t
′)dt′, k ∈ C, (1.9)

and ∂D+ denotes the positively oriented boundary of the first quadrant of the k-complex

plane, in which Re(ik2) < 0 (see Figure 1.1).

D+

k

Figure 0.1:

1

Figure 1.1. The region D+.

Our result for ibvp (1.1) is summarised as follows.

Theorem 1 (Well-posedness of the LS ibvp (1.1)). Suppose that s > 1
2 and 2s+1

4 /∈ N0+ 1
2 .

Then, the UTM formula (1.7) defines a solution u to the LS ibvp (1.1) together with the

compatibility conditions (1.5) and (1.6) in the following sense:

1. Space estimate: The map t 7→ u(t) is C([0, T ];Hs
x(0,∞)) with the estimate

sup
t∈[0,T ]

‖u(t)‖Hs
x(0,∞) 6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
. (1.10)

2. Time estimates: The map x 7→ u(x) is C([0,∞);H
2s+1

4
t (0, T )) with the estimate

sup
x∈[0,∞)

‖u(x)‖
H

2s+1
4

t (0,T )
6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
(1.11)

and the map x 7→ ux(x) is C([0,∞);H
2s−1

4
t (0, T )) with the estimate

sup
x∈[0,∞)

‖ux(x)‖
H

2s−1
4

t (0,T )
6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
. (1.12)

In the above estimates, cs > 0 is a constant that depends on s.



4 The Nonlinear Schrödinger Equation on the Half-Line

3. Weak solution: For any φ(x) ∈ C∞0 (R) such that φ(0) = 0, the function 〈u(t), φ〉L2
x(0,∞)

is differentiable in (0, T ) with

d

dt
〈u(t), φ〉L2

x(0,∞) = −〈u(t), iφxx〉L2
x(0,∞) + ig0(t)φx(0). (1.13)

4. Initial and boundary conditions: u(x, 0) = u0(x) for all x ∈ [0,∞), and u(0, t) =

g0(t) for all t ∈ [0, T ].

Initial-boundary value problems for linear dispersive evolution equations on the half-line

are also analysed in [FSu].

The second purpose of this work is to introduce a new approach for proving well-

posedness of nonlinear ibvps. The crucial ingredient of this approach is to use for the

linear version of the given nonlinear equation the formula obtained via the UTM. The

works of Bona, Sun and Zhang [BSZ1] (2001), Colliander and Kenig [CK] (2002), and

Holmer [H1] (2005) show that it is possible to prove well-posedness of nonlinear evolution

ibvps with data in Sobolev spaces by using ideas similar to the ones appearing in the initial

value problem. In particular, one first obtains a solution formula for the linear ibvp with

forcing and uses this formula to derive appropriate linear estimates; then, one replaces the

forcing in the linear formula by the nonlinearity and uses the linear estimates together

with a contraction mapping argument to infer well-posedness of the nonlinear ibvp.

It is often the case, however, that even the derivation of the linear solution formula is

somewhat technical and unintuitive, not to mention the derivation of the relevant linear

estimates. The main advantage of the UTM is that it yields explicit formulae for forced

linear evolution equations with an arbitrary number of derivatives. Thus, it is not sur-

prising that the “naturally emerging” linear UTM formulae can be used to establish local

well-posedness of nonlinear evolution ibvps through a contraction mapping argument.

In order to illustrate our approach, we consider the cubic nonlinear Schrödinger (NLS)

equation formulated on the half-line:

iut + uxx + λu|u|2 = 0, x ∈ (0,∞), t ∈ (0, T ), T < 1, λ ∈ C, (1.14a)

u(x, 0) = u0(x) ∈ Hs
x(0,∞), x ∈ [0,∞), (1.14b)

u(0, t) = g0(t) ∈ H
2s+1

4
t (0, T ), t ∈ [0, T ]. (1.14c)

Holmer [H1] has shown local well-posedness of ibvp (1.14) for 0 6 s < 3
2 , s 6= 1

2 . It

should be noted that the left end-point of this interval is consistent with the Cauchy

problem for NLS, which has critical well-posedness index s = 0. The approach of [H1] is

based on writing ibvp (1.14) as a superposition of three initial value problems on R× R.

Since none of these problems admits boundary conditions, the boundary datum (1.14c)

enters the analysis via a so-called boundary forcing integral operator, which is defined by

means of a Riemann-Liouville fractional integral. As one would expect, several results

from the classical theory of the NLS initial value problem are employed in [H1], including

Strichartz estimates.

The method of [H1] is inspired by the work of Colliander and Kenig [CK] on ibvps for

the generalised Korteweg-de Vries (KdV) equation ut + uxxx + 1
k+1∂xu

k+1 = 0, k ∈ N,

where it is shown that the KdV (k = 1) is locally well-posed on the half-line for initial
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and boundary data in Hs(0,∞) ×H
s+1
3 (0, T ) with s > 0 (this result was later improved

by Holmer to s > −3
4 [H2]). In this context, we note that Bona, Sun and Zhang [BSZ1]

obtained local well-posedness for the KdV on the half-line for s > 3
4 based on a different

approach, which involves obtaining linear solution formulae via a Laplace transform with

respect to the temporal variable. In a preliminary version of an article implementing this

approach for NLS (see [BSZ2]), the same authors study local well-posedness of ibvp (1.14)

for s > 0.

As already mentioned, the first step towards showing well-posedness of the NLS ibvp

(1.14) is to analyse the corresponding linear ibvp with forcing:

iut + uxx = f(x, t) ∈ C([0, T ];Hs
x(0,∞)), x ∈ (0,∞), t ∈ (0, T ), T < 1, (1.15a)

u(x, 0) = u0(x) ∈ Hs
x(0,∞), x ∈ [0,∞), (1.15b)

u(0, t) = g0(t) ∈ H
2s+1

4
t (0, T ), t ∈ [0, T ]. (1.15c)

The UTM produces the following solution formula for ibvp (1.15):

u(x, t) = S
[
u0, g0, f

]
(x, t) (1.16)

.
=

1

2π

∫
R
eikx−ik

2t û0(k)dk − 1

2π

∫
∂D+

eikx−ik
2t û0(−k)dk

− i

2π

∫
R
eikx−ik

2t

∫ t

0
eik

2t′ f̂(k, t′)dt′dk +
i

2π

∫
∂D+

eikx−ik
2t

∫ t

0
eik

2t′ f̂(−k, t′)dt′dk

+
1

π

∫
∂D+

eikx−ik
2t kg̃0(k

2, T )dk, (1.17)

where û0(k) and g̃0(k
2, T ) are defined by (1.8) and (1.9),

f̂(k, t) =

∫ ∞
0

e−ikxf(x, t)dx, (1.18)

and the contour ∂D+ is shown in Figure 1.1.

Note that the writing u = S[u0, g0, f ] introduced by (1.16) denotes the solution u to

the LS on the half-line with data (u0, g0) and forcing f . With this notation, the solution

formula (1.7) to the LS ibvp (1.1) is given by u = S[u0, g0, 0].

Further note that, as in the case of the LS ibvp (1.1), if s > 1
2 then the NLS ibvp (1.14)

should be supplemented with the compatibility condition (1.5). What is more, for s > 5
2

additional nonlinear compatibility conditions are introduced through NLS. These extra

conditions are not required if we restrict 1
2 < s 6 5

2 , and the situation is similar for the

forced LS ibvp (1.15). For this range of s, our well-posedness results for ibvps (1.14) and

(1.15) are summarised by the following theorems.

Theorem 2 (Well-posedness of the forced LS ibvp (1.15)). Suppose that 1
2 < s < 5

2 . Then

the UTM formula (1.17) defines a solution u ∈ C([0, T ];Hs
x(0,∞)) to ibvp (1.15) with the

compatibility condition (1.5), which satisfies the space estimate

sup
t∈[0,T ]

‖u(t)‖Hs
x(0,∞) 6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )
+T sup

t∈[0,T ]
‖f(t)‖Hs

x(0,∞)

)
, (1.19)

where cs > 0 is a constant depending on s.
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Theorem 3 (Well-posedness of the NLS ibvp (1.14)). Suppose that 1
2 < s < 5

2 . Then for

T ∗ > 0 given by

T ∗ = min

{
T,

1

32c3s |λ|
(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)2}, cs = c(s) > 0, (1.20)

there exists a unique solution u ∈ C
(
[0, T ∗];Hs

x(0,∞)
)

to the NLS ibvp (1.14) with the

compatibility condition (1.5), which satisfies the space estimate

‖u(t)‖Hs
x(0,∞) 6 2cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
, 0 6 t 6 T ∗. (1.21)

Furthermore, the data-to-solution map {u0, g0} 7→ u is locally Lipschitz continuous.

Unlike the NLS ibvp, there is an extensive literature about the NLS Cauchy problem.

Well-posedness in Sobolev spaces Hs for any s ≥ 0 was proved by Bourgain in [B1] using

modern harmonic analysis techniques. This approach was expanded in his monograph [B2]

in various directions. Time estimates for the solution of the linear Schrödinger Cauchy

problem, like estimate (2.6a), were derived by Kenig, Ponce and Vega in [KPV]. Many

more results about the NLS initial value problem can be found in Craig, Kappeler and

Strauss [CKS], Cazenave [C], Cazenave and Weissler [CW], Ghidaglia and Saut [GS],

Linares and Ponce [LP], Carroll and Bu [CB], Ginibre and Velo [GV], Kato [K], Tsutsumi

[Tsu], and the references therein.

The study of the nonlinear Schrödinger equation is strongly motivated by its physical

relevance. Indeed, Zakharov [Z] and Hasimoto and Ono [HO] have derived NLS in the

context of water waves in infinite and finite depth, respectively; moreover, in the latter case

a rigorous justification of the model has been provided by Craig, Sulem and Sulem [CSS].

The equation has also been suggested as a model for rogue waves, see Peregrine [P] and

Chabchoub, Hoffmann and Akhmediev [CHA]. Furthermore, in the context of nonlinear

optics NLS is the standard model to describe the evolution of almost monochromatic

waves in a weakly nonlinear dispersive medium, see for example Boyd [BO] and Newell

and Moloney [NM]. Further discussion and references on the physical significance of the

equation can be found in the recent book by Lannes [L].

Finally, NLS is completely integrable (see Zakharov and Manakov [ZM]) with the Lax

pair

µx + ik [σ3, µ] = Q(x, t)µ,

µt + 2ik2 [σ3, µ] = R(x, t, k)µ, k ∈ C,

where σ3 is the third Pauli matrix,

σ3 =

(
1 0

0 −1

)
,

and

Q(x, t) =

(
0 u(x, t)

λū(x, t) 0

)
, R(x, t, k) = 2kU(x, t)− iUxσ3 − iλ|u|2σ3.
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The Cauchy problem for the cubic NLS equation was solved via the Inverse Scattering

Transform method by Zakharov and Shabat [ZS], while the initial-boundary value problem

on the half-line and on the interval was analysed by Fokas and collaborators in [FI] and

[FIS], respectively. The Cauchy problem for a related generalized NLS equation, which is

integrable, has been studied in [FH].

Organisation of the paper. In Section 2, we derive the basic estimates for the LS initial

value problem with Sobolev data. In Section 3, using the results of Section 2 we reduce

the LS ibvp (1.1) to an ibvp with zero initial datum and a boundary datum which is more

convenient for estimating the corresponding solution. We then establish well-posedness of

the reduced problem for data in Sobolev spaces and, hence, deduce Theorem 1 for the LS

ibvp (1.1). In Section 4, we solve the forced LS ibvp (1.15) (Theorem 2) using Theorem

1. Finally, in Section 5 we establish well-posedness of the NLS ibvp (1.14) (Theorem 3)

via a contraction mapping argument.

2. Space and time estimates in Sobolev spaces for the LS ivp

In order to prove Theorem 1 which establishes well-posedness of the LS ibvp (1.1), we

first need to obtain certain estimates for the initial value problem (ivp)

iUt + Uxx = 0, x ∈ R, t ∈ (0, T ), (2.1a)

U(x, 0) = U0(x) ∈ Hs
x(R), (2.1b)

where U0 is a Sobolev extension of u0 from (0,∞) to R satisfying

‖U0‖Hs
x(R) 6 c ‖u0‖Hs

x(0,∞) . (2.2)

The solution to ivp (2.1) is given by the formula

U(x, t) =
1

2π

∫
R
eiξx−iξ

2t Û0(ξ)dξ, x ∈ R, t ∈ R, (2.3)

where Û0(ξ) denotes the standard Fourier transform with respect to the spatial variable:

Û0(ξ) =

∫
R
e−iξxU0(x)dx, ξ ∈ R. (2.4)

Using formula (2.3), we establish the following well-posedness theorem for ivp (2.1).

Theorem 4 (LS ivp with Sobolev data). The function U defined by (2.3) solves the

ivp (2.1) in the following sense:

1. Space estimate: The map t 7→ U(t) is C([0, T ];Hs
x(R)) with

‖U(t)‖Hs
x(R) = ‖U0‖Hs

x(R) ∀t ∈ [0, T ], s ∈ R. (2.5)
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2. Time estimates: The map x 7→ U(x) is C(Rx;H
2s+1

4
t (0, T )) and the map x 7→ Ux(x)

is C(Rx;H
2s−1

4 (0, T )) with

sup
x∈[0,∞)

‖U(x)‖
H

2s+1
4

t (0,T )
6 cs

(
1 + T

1
2
)
‖U0‖Hs

x(R) , s > −1

2
, (2.6a)

sup
x∈[0,∞)

‖Ux(x)‖
H

2s−1
4 (0,T )

6 cs
(
1 + T

1
2
)
‖U0‖Hs

x(R) , s >
1

2
. (2.6b)

3. Weak solution: For any given φ(x) ∈ C∞0 (R) such that φ(0) = 0, the function

〈U(t), φ〉L2
x(0,∞) is differentiable in (0, T ) with

d

dt
〈U(t), φ〉L2

x(0,∞) = −〈U(t), iφxx〉L2
x(0,∞) + iU(0, t)φx(0). (2.7)

4. Initial condition: U(x, 0) = U0(x) for all x ∈ R.

Proof. 1. Proving the space estimate. Since Û(ξ, t) = e−iξ
2tÛ0(ξ), the estimate follows

by the definition of the Sobolev norm and the dominated convergence theorem.

2. Proving the time estimates. We write

U(x, t) = I1(x, t) + I2(x, t), (2.8)

where

I1(x, t)
.
=

1

2π

∫
R
eiξx−iξ

2tθ(ξ)Û0(ξ)dξ (2.9)

I2(x, t)
.
=

1

2π

∫
R
eiξx−iξ

2t [1− θ(ξ)] Û0(ξ)dξ (2.10)

and θ ∈ C∞0 (R) is a smooth cut-off function with compact support such that

θ(ξ) =

{
1, |ξ| 6 1,

0, |ξ| > 2.
(2.11)

Estimation of I1. By the definition of θ(ξ),

I1(x, t) =
1

2π

∫ 2

−2
eiξx−iξ

2tθ(ξ)Û0(ξ)dξ, x ∈ R, t ∈ (0, T ). (2.12)

Using the Cauchy-Schwarz inequality, for any j ∈ N \ {0}, we have∣∣∣∂jt I1(x, t)∣∣∣ =

∣∣∣∣ 1

2π

∫ 2

−2
eiξx−iξ

2t(−iξ2)jθ(ξ)Û0(ξ)dξ

∣∣∣∣
6

1

2π

(∫ 2

−2

(
1 + ξ2

)−s ∣∣ξ4j∣∣ |θ(ξ)|2 dξ) 1
2

·
(∫ 2

−2

(
1 + ξ2

)s |Û0(ξ)|2dξ
) 1

2

6 cs,θ 22j ‖U0‖Hs
x(R) ,

where cs,θ = ‖
(
1 + ξ2

)−s/2
θ(ξ)‖L2(−2,2) <∞. Therefore, for any j ∈ N0 we find∥∥∥∂jt I1(x)

∥∥∥
L2(0,T )

6 cs,θ 22j T
1
2 ‖U0‖Hs

x(R) ∀j ∈ N0, s ∈ R, x ∈ R. (2.13)
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Then, for m = µ ∈ N0, using the definition

‖I1(x)‖Hµ(0,T ) =

µ∑
j=0

‖∂jt I1(x)‖L2(0,T ), µ ∈ N0, (2.14)

together with estimate (2.13), we get

‖I1(x)‖Hµ(0,T ) 6 cs,θ
22(µ+1) − 1

22 − 1
T

1
2 ‖U0‖Hs

x(R) ∀µ ∈ N0, s ∈ R, x ∈ R. (2.15)

We will deal with the non-integer case by employing the following interpolation lemma,

which can be proved via Hölder’s inequality.

Lemma 2.1 (Sobolev interpolation). For m1 < m < m2, we have

‖f‖Hm 6 ‖f‖
m2−m
m2−m1
Hm1 ‖f‖

m−m1
m2−m1
Hm2 . (2.16)

Therefore, given any m > 0, Lemma 2.1 with f = I1(x), m1 = bmc and m2 = bmc+ 1

and estimate (2.15) we have

‖I1(x)‖Hm
t (0,T ) 6 cs,θ

22(bmc+2) − 1

3
T

1
2 ‖U0‖Hs

x(R) , m > 0, s ∈ R, x ∈ R. (2.17)

Estimation of I2. Regarding I2(x, t), by the definition of θ(ξ) it can be written as

I2(x, t) =
1

2π

∫ −1
−∞

eiξx−iξ
2t [1− θ(ξ)] Û0(ξ)dξ+

1

2π

∫ ∞
1

eiξx−iξ
2t [1− θ(ξ)] Û0(ξ)dξ. (2.18)

Let

σ(τ)
.
= τ

1
2 =

√
|τ | ei arg(τ)/2, arg(τ) ∈ [0, 2π). (2.19)

The change of variables

ξ = ξ1(τ) = −σ(−τ) = −(−τ)
1
2 (2.20)

in the first integral of (2.18) implies that τ = −ξ2 and maps the interval (−∞,−1] to the

interval (−∞,−1] and vice-versa. For the second integral of (2.18), we make the change

of variables

ξ = ξ2(τ) = σ(−τ) = (−τ)
1
2 (2.21)

which, as before, implies that τ = −ξ2 and maps the interval [1,∞) to the interval

(−∞,−1] and vice-versa (note, however, the change in direction). Overall, (2.18) becomes

I2(x, t) =
1

2π

∫ −1
−∞

eiξ1(τ)x+iτt [1− θ(ξ1(τ))] Û0(ξ1(τ))
dτ

[−2ξ1(τ)]

+
1

2π

∫ −1
−∞

eiξ2(τ)x+iτt [1− θ(ξ2(τ))] Û0(ξ2(τ))
dτ

2ξ2(τ)
. (2.22)

Let

I2,1(x, t)
.
=

1

2π

∫ −1
−∞

eiξ1(τ)x+iτt [1− θ(ξ1(τ))] Û0(ξ1(τ))
dτ

[−2ξ1(τ)]
. (2.23)

Then, by the inverse Fourier transform formula it follows that Î2,1(x, τ) ≡ 0 for τ ∈
[−1,∞), while for τ ∈ (−∞,−1] we have

Î2,1(x, τ) = eiξ1(τ)x [1− θ(ξ1(τ))]
Û0(ξ1(τ))

[−2ξ1(τ)]
. (2.24)
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For convenience of notation, we let

m =
2s+ 1

4
. (2.25)

Taking into consideration that |eiξ1(τ)x| = 1 and |1− θ(ξ1(τ))| ≤ 1, we then have

‖I2,1(x)‖2Hm
t (R) 6

∫ −1
−∞

(
1 + τ2

)m ∣∣∣∣∣ Û0(ξ1(τ))

[−2ξ1(τ)]

∣∣∣∣∣
2

dτ

=

∫ −1
−∞

(1 + |ξ|4)m

∣∣∣Û0(ξ)
∣∣∣2

4|ξ|(−ξ)
(−2ξ)dξ [since |ξ| = −ξ]

'
∫ −1
−∞

(
1 + ξ2

)2m− 1
2

∣∣∣Û0(ξ)
∣∣∣2 dξ. (2.26)

Since by (2.25) we have 2m− 1
2 = s, from inequality (2.26) we get

‖I2,1(x)‖Hm
t (R) . ‖U0‖Hs

x(R) , x ∈ R, s ∈ R, (2.27)

which is the desired estimate for I2,1(x). In a similar way we find that for

I2,2(x, t)
.
=

1

2π

∫ −1
−∞

eiξ2(τ)x+iτt [1− θ(ξ2(τ))] Û0(ξ2(τ))
dτ

2ξ2(τ)
(2.28)

we have the estimate

‖I2,2(x)‖Hm
t (R) . ‖U0‖Hs

x(R) , x ∈ R, s ∈ R. (2.29)

Combining estimates (2.17), (2.27) and (2.29) we conclude that

‖U(x)‖Hm
t (0,T ) 6 cs,θ

(
1 + T

1
2
)
‖U0‖Hs

x(R) , x ∈ R, s > −1

2
,

which for T < 1 reads

‖U(x)‖Hm
t (0,T ) 6 cs,θ ‖U0‖Hs

x(R) , x ∈ R, s > −1

2
.

For continuity, we need to show that for any sequence {xn} ⊂ R converging to x ∈ R,

we have

‖U(xn)− U(x)‖Hm
t (0,T ) −−−−→

n→∞
0. (2.30)

By computations similar to those leading to (2.17), we find

‖I1(xn)−I1(x)‖Hm
t (0,T ) 6

{( bmc∑
j=0

cs,θ,j(xn, x)

)bmc+1−m
+

( bmc+1∑
j=0

cs,θ,j(xn, x)

)m−bmc}
‖U0‖Hs

x(R) ,

where

cs,θ,j(xn, x) =

(
1

2π

∫ 1

−1

∣∣∣eiξxn − eiξx∣∣∣ (1 + ξ2
)−s

ξ4j |θ(ξ)|2dξ
) 1

2

.

Note, however, that for all j ∈ N0∫ 1

−1

∣∣∣eiξxn − eiξx∣∣∣ (1 + ξ2
)−s

ξ4j |θ(ξ)|2dξ 6 2

∫ 1

−1

(
1 + ξ2

)−s
ξ4j |θ(ξ)|2dξ <∞,
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thus by the dominated convergence theorem we have limn→∞ cs,θ,j(xn, x) = 0 and hence,

‖I1(xn)− I1(x)‖Hm
t (0,T ) −−−−−−−→

n→∞
0.

Furthermore, recalling the expression (2.24) for the Fourier transform of I2,1 with respect

to t, we have

‖I2,1(xn)− I2,1(x)‖2Hm
t (R) =

∫
R

(1 + τ2)m|Î2,1(xn, τ)− Î2,1(x, τ)|2dτ

=

∫ −1
−∞

(1 + τ2)m

∣∣∣∣∣ (eiξ1(τ)xn − eiξ1(τ)x) [1− θ(ξ1(τ))]
Û0(ξ1(τ))

[−2ξ1(τ)]

∣∣∣∣∣
2

dτ

6
∫ −1
−∞

(1 + τ2)m

∣∣∣∣∣ (eiξ1(τ)xn − eiξ1(τ)x) Û0(ξ1(τ))

[−2ξ1(τ)]

∣∣∣∣∣
2

dτ,

since |1 − θ(ξ1(τ))| 6 1 for τ ∈ (−∞,−1]. Also, it follows from definitions (2.19) and

(2.20) that if τ ∈ (−∞,−1] then ξ1(τ) ∈ (−∞,−1], hence recalling (2.26) and (2.27), we

get∫ −1
−∞

(1 + τ2)m

∣∣∣∣∣ (eiξ1(τ)xn − eiξ1(τ)x) Û0(ξ1(τ))

[−2ξ1(τ)]

∣∣∣∣∣
2

dτ 6
∫ −1
−∞

(1 + τ2)m

∣∣∣∣∣ Û0(ξ1(τ))

[−2ξ1(τ)]

∣∣∣∣∣
2

dτ

. ‖U0‖Hs
x(R) <∞.

Thus, by the dominated convergence theorem we obtain ‖I2,1(xn)−I2,1(x)‖Hm
t (R) −−−−→

n→∞
0,

which implies

‖I2,1(xn)− I2,1(x)‖Hm
t (0,T ) −−−−→

n→∞
0.

The same can be shown for I2,2(x, t). Overall, we conclude that the map x 7→ U(x) is

C(Rx;Hm
t (0, T )). The argument for the map x 7→ Ux(x) is analogous.

3. Proving that U is a weak solution. The space S(R) is dense in Hs
x(R), hence there

exists a sequence {U0,n(x)} ⊂ S(R) converging to the initial data U0(x) in Hs
x(R). Further-

more, the LS ivp with initial datum U0,n is well-posed with solution Un ∈ C∞([0, T ];S(R))

given by formula (2.3) and satisfying the identity

d

dt
〈Un(t), φ〉L2

x(0,∞) = −〈Un(t), iφxx〉L2
x(0,∞) + iUn(0, t)φx(0) (2.31)

for any given test function φ(x) ∈ C∞0 (R) such that φ(0) = 0. Taking the limit n→∞ in

the above identity, we conclude that the function U defined by equation (2.3) is a weak

solution to the LS ivp (2.1) in the sense of equation (2.7).

4. Proving that the initial condition is satisfied. It follows from the density of S(R)

in Hs
x(R) that Un(0) −−−−→

n→∞
U(0) in Hs

x(R). We know, however, that Un(0) = U0,n and

since U0,n −−−−→
n→∞

U0 in Hs
x(R), we conclude that U(0) = U0 in Hs

x(R). �
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3. Solving the LS ibvp in Sobolev spaces

In this section, we prove Theorem 1 for the LS ibvp (1.1). Our strategy is as follows.

First, we reduce ibvp (1.1) to a problem with zero initial datum. Then, by constructing a

suitable extension of the boundary datum we further reduce this problem to an ibvp whose

UTM solution formula is more convenient to estimate. Finally, we prove well-posedness

of the reduced ibvp and thus obtain Theorem 1 for the original problem (1.1). Crucial to

this proof will be the boundedness of the Laplace transform in L2
x(0,∞).

Preliminary reduction of ibvp (1.1). Define the function v as the difference

v(x, t) = u(x, t)− U(x, t), x ∈ [0,∞), t ∈ [0, T ], (3.1)

where u is the solution to the LS ibvp (1.1) and U satisfies the LS ivp (2.1). By linearity,

subtracting these two problems yields the following “zero initial condition” ibvp for v:

ivt + vxx = 0, x ∈ (0,∞), t ∈ (0, T ), (3.2a)

v(x, 0) = 0, x ∈ [0,∞), (3.2b)

v(0, t) = G0(t) ∈ Hm
t (0, T ), m

.
=

2s+ 1

4
, (3.2c)

where G0 is defined by

G0(t)
.
= g0(t)− U(0, t). (3.3)

Note that G0 ∈ Hm
t (0, T ) since the datum g0 is prescribed as a function in Hm

t (0, T ) and

also, by Theorem 4, we have that U(0, t) ∈ Hm
t (0, T ) for s > −1

2 .

The UTM solution formula (1.7) corresponding to the reduced ibvp (3.2) is

v(x, t) =
1

π

∫
∂D+

eikx−ik
2t kG̃0(k

2, T )dk, (3.4)

where

G̃0(k
2, T )

.
=

∫ T

0
eik

2tG0(t)dt. (3.5)

Further reduction of ibvp (1.1). The space Hm
0 (0, T ), which is defined as the closure

of C∞0 (0, T ) in Hm(0, T ), can be characterised as follows: if m > 1
2 then f ∈ Hm

0 (0, T )

if and only if f ∈ Hm(0, T ) and f (j)(0) = f (j)(T ) = 0 for all 0 6 j < m − 1
2 . Moreover,

given a function f ∈ Hm
0 (0, T ) and denoting by F its extension by zero outside [0, T ],

F (t) =

 f(t), t ∈ [0, T ],

0, t ∈ [0, T ]c,

we have the following classical result: if m > 1
2 the mapping f 7→ F is continuous from

Hm
0 (0, T ) to Hm(R) with the estimate

‖F‖Hm(R) 6 cm ‖f‖Hm
0 (0,T ) .

For a proof, see for example Lions and Magenes [LM], §11.3, Theorem 11.4.

The effect of this result on the estimation of the right-hand side of (3.4) is significant:

extending the function G0 by zero outside the interval [0, T ], we observe that the term G̃±0
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defined by (3.5) turns into a Fourier transform over R, hence the relevant integral can be

easily bounded by the standard Sobolev norm of the initial and boundary data.

In this connection, we note that the compatibility condition (1.5), which supplements

ibvp (1.1) for s > 1
2 , implies that G0(0) = 0. Also, the additional compatibility conditions

(1.6), which hold when s > 5
2 , imply that G

(j)
0 (0) = 0 for all 1 6 j < m− 1

2 . However, at

t = T the functions G
(j)
0 (T ) do not necessarily vanish. Thus, it cannot be guaranteed that

the extension of G0 ∈ Hm
t (0, T ) by zero outside [0, T ] is a function in Hm

t (R). Instead,

choose an extension G ∈ Hm
t (R) of G0 ∈ Hm

t (0, T ) such that∥∥G∥∥
Hm
t (R) 6 c ‖G0‖Hm

t (0,T ) (3.6)

and consider the function

g(t)
.
= θ(t) ·G(t) ∈ Hm

t (R)

with θ ∈ C∞0 (R) defined by (2.11). Observe that g(t) ≡ G0(t) on the interval [0, T ], T < 1.

Also, supp(g) ⊂ [−2, 2] and, in particular,

g(j)(2) = 0, j ∈ N0,

while from the compatibility conditions (1.5) and (1.6) at the origin, we have

g(j)(0) = 0, 0 6 j < m− 1

2
.

Thus, we can now infer that g(t) ∈ Hm
0 (0, 2) and its extension h by zero outside [0, 2],

given by

h(t) =

 g(t), t ∈ [0, 2],

0, t ∈ [0, 2]c,
(3.7)

obeys the estimate

‖h‖Hm
t (R) 6 cs ‖g‖Hm

0 (0,2), s >
1

2
.

Then, since ‖g‖Hm
0 (0,2) = ‖g‖Hm

t (0,2), using the algebra property and the definition of

Hm
t (0, 2) as a restriction of Hm

t (R) we find

‖h‖Hm
t (R) 6 cs ‖g‖Hm

t (R) 6 cs,θ ‖G‖Hm
t (R) 6 cs,θ ‖G0‖Hm

t (0,T ), s >
1

2
.

Finally, by definition (3.3), the triangle inequality and estimates (2.6a) and (2.2), we

obtain

‖h‖Hm
t (R) 6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖Hm
t (0,T )

)
, s >

1

2
. (3.8)

Consider now the following reduced version of ibvp (1.1):

ivt + vxx = 0, x ∈ (0,∞), t ∈ (0, 2), (3.9a)

v(x, 0) = 0, x ∈ [0,∞), (3.9b)

v(0, t) = h(t) ∈ Hm
t (R), t ∈ [0, 2], (3.9c)

where supp(h) ⊂ [0, 2]. The UTM solution formula (1.7) now reads

v(x, t) =
1

π

∫
∂D+

eikx−ik
2t kĥ(−k2)dk, x ∈ [0,∞), t ∈ [0, 2], (3.10)



14 The Nonlinear Schrödinger Equation on the Half-Line

where the contour ∂D+ is depicted in Figure 1.1 and

ĥ(−k2) .
=

∫
R
eik

2t h(t)dt. (3.11)

Theorem 5 (Reduced LS ibvp with Sobolev data). Suppose that s > 1
2 . Then, the

function v defined by the UTM formula (3.10) solves the reduced ibvp (3.9) in the following

sense:

1. Space estimate: The map t 7→ v(t) is C([0, 2];Hs
x(0,∞)) with

sup
t∈[0,2]

‖v(t)‖Hs
x(0,∞) 6 cs ‖h‖Hm

t (R). (3.12)

2. Time estimates: The map x 7→ v(x) is C([0,∞);Hm
t (0, 2)) with the estimate

sup
x∈[0,∞)

‖v(x)‖Hm
t (0,2) 6 cs ‖h‖Hm

t (R) (3.13a)

and the map x 7→ vx(x) is C([0,∞);H
m− 1

2
t (0, 2)) with the estimate

sup
x∈[0,∞)

‖vx(x)‖
H
m− 1

2
t (0,2)

6 cs ‖h‖Hm
t (R). (3.13b)

In all of the above estimates, cs > 0 is a constant depending on s.

3. Weak solution: For any φ(x) ∈ C∞0 (R) such that φ(0) = 0, the function 〈v(t), φ〉L2
x(0,∞)

is differentiable in (0, 2) with

d

dt
〈v(t), φ〉L2

x(0,∞) = −〈v(t), iφxx〉L2
x(0,∞) + ih(t)φx(0). (3.14)

4. Initial and boundary conditions: v(x, 0) = 0 for all x ∈ [0,∞) and v(0, t) = h(t)

for all t ∈ [0, 2].

Proof. 1. Proving the space estimate (3.12). Starting from formula (3.10), we have

v(x, t) =
1

π

∫
∂D+

eikx−ik
2tkĥ(−k2)dk

=
1

π

∫ 0

∞
e−kx+ik

2t(ik)ĥ(k2)idk +
1

π

∫ ∞
0

eikx−ik
2tkĥ(−k2)dk

= v1(x, t) + v2(x, t),

where the functions v1 and v2 are defined by

v1(x, t)
.
=

1

π

∫ ∞
0

e−kx+ik
2tkĥ(k2)dk, (3.15a)

v2(x, t)
.
=

1

π

∫ ∞
0

eikx−ik
2tkĥ(−k2)dk. (3.15b)

Estimate for v2. Let

V̂2(k, t) =

{
2e−ik

2tkĥ(−k2), k > 0,

0, k < 0,
(3.16)

and define

V2(x, t) =
1

2π

∫ ∞
−∞

eikx V̂2(k, t)dk, x ∈ R. (3.17)
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Note that V2
∣∣
x∈R+ = v2, thus

‖v2(t)‖2Hs(R+
x )
6 ‖V2‖2Hs

x(R) = 4

∫ ∞
0

(
1 + k2

)s
k2
∣∣ĥ(−k2)

∣∣2dk. (3.18)

Now, let τ = −k2 ⇒ dτ = −2kdk and k =
√
−τ . Then,

‖v2(t)‖2Hs(R+
x )

= 2

∫ 0

−∞
(1 + |τ |1/2)s |τ |

1
2
∣∣ĥ(−τ)

∣∣2dτ
6 2

∫ ∞
−∞

(1 + |τ |2)
s
2
(
1 + τ2

) 1
4
∣∣ĥ(τ)

∣∣2dτ 6 2‖h‖2
H

2s+1
4

t (R)
. (3.19)

Estimate for v1. Letting

Gh(k) = kĥ(k2), (3.20)

we have

v1(x, t) =
1

π

∫ ∞
0

e−kx+ik
2tGh(k)dk. (3.21)

We shall prove estimate (3.12) for v1 by letting s = bsc + β, β ∈ [0, 1), and considering

the three cases: bsc = 0; β = 0; bsc 6= 0 and β 6= 0.

The case s = β ∈ (0, 1). By the definition of the equivalent fractional norm for Hβ
x (0,∞),

we have

‖v1(t)‖2β =

∫ ∞
0

∫ ∞
0

1

|x− y|1+2β

∣∣∣∣∫ ∞
0

(
e−kx − e−ky

)
eik

2tGh(k)dk

∣∣∣∣2 dydx
=

∫ ∞
0

∫ ∞
0

1

|x− y|1+2β

∣∣∣∣∫ ∞
0

(
e−kx − e−ky

)
eik

2tGh(k)dk

∣∣∣∣ ∣∣∣∣∫ ∞
0

(
e−lx − e−ly

)
eil

2tGh(l)dl

∣∣∣∣ dydx
6
∫ ∞
0

∫ ∞
0

1

|x− y|1+2β

(∫ ∞
0

∣∣∣e−kx − e−ky∣∣∣ |Gh(k)|dk
)(∫ ∞

0

∣∣∣e−lx − e−ly∣∣∣ |Gh(l)|dl
)
dydx

=

∫ ∞
0

∫ ∞
0
|Gh(k)| |Gh(l)|

(∫ ∞
0

∫ ∞
0

(
e−kx − e−ky

) (
e−lx − e−ly

)
|x− y|1+2β

dydx

)
dldk. (3.22)

Letting

α =

(
k

l

) 1
2

(3.23)

and making the change of variables

x′ = (kl)
1
2x, y′ = (kl)

1
2 y,

∂(x′, y′)

∂(x, y)
=

∣∣∣∣∣ (kl)
1
2 0

0 (kl)
1
2

∣∣∣∣∣ = kl,

we have ∫ ∞
0

∫ ∞
0

(
e−kx − e−ky

) (
e−lx − e−ly

)
|x− y|1+2β

dydx

= (kl)−
1
2
+β

∫ ∞
0

∫ ∞
0

(
e−αx

′ − e−αy′
)(

e−
x′
α − e−

y′
α

)
|x′ − y′|1+2β

dx′dy′.
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Therefore, after dropping the primes estimate (3.22) becomes

‖v1(t)‖2β 6
∫ ∞
0

∫ ∞
0
|Gh(k)| |Gh(l)| (kl)−

1
2
+β ∆

(
α,

1

α
, β
)
dldk, (3.24)

where

∆
(
α,

1

α
, β
) .

=

∫ ∞
0

∫ ∞
0

(e−αx − e−αy)
(
e−

x
α − e−

y
α

)
|x− y|1+2β

dydx

= 2

∫ ∞
0

∫ ∞
0

e−(α+ 1
α)x − e−(αy+ x

α)

|x− y|1+2β
dydx. (3.25)

The following lemma computes the quantity ∆
(
α, 1α , β

)
appearing in (3.24).

Lemma 3.1. If α ∈ [0,∞] and β ∈ (0, 1), then

∆
(
α,

1

α
, β
)

= Cβ

(
α+

1

α

)−1 [
α2β +

(
1

α

)2β

−
(
α+

1

α

)2β
]

(3.26)

where

Cβ =


Γ(1− 2β)

β
, β ∈

(
0, 12
)

π

sin(2πβ)Γ(2β)β
, β ∈

[
1
2 , 1
) (3.27)

and we have the estimate

∆
(
α,

1

α
, β
)
. cβ

(
α+

1

α

)−1
, cβ > 0, β ∈ (0, 1). (3.28)

The proof of Lemma 3.1 is given after the current proof. Combining (3.24) and (3.28)

and recalling the definition (3.23) of α, we find

‖v1(t)‖2β .
∫ ∞
0

∫ ∞
0
|Gh(k)| |Gh(l)| (kl)−

1
2
+β

(
α+

1

α

)−1
dldk

=

∫ ∞
0

∫ ∞
0
|Gh(k)| |Gh(l)| (kl)

β

k + l
dldk

=

∫ ∞
0

∫ ∞
0
|k|β|l|β |Gh(k)| |Gh(l)|

(∫ ∞
0

e−(k+l)xdx

)
dldk

≤
∫ ∞
0

∫ ∞
0

(
1 + k2

)β
2 (1 + |l|2)

β
2 |Gh(k)| |Gh(l)|

(∫ ∞
0

e−(k+l)xdx

)
dldk

=

∫ ∞
0

(∫ ∞
0

e−kx
(
1 + k2

)β
2 |Gh(k)|dk

)(∫ ∞
0

e−lx(1 + |l|2)
β
2 |Gh(l)|dl

)
dx,

(3.29)

which gives the estimate

‖v1(t)‖2β .
∫ ∞
0

∣∣∣∣∫ ∞
0

e−kx
(
1 + k2

)β
2 |Gh(k)|dk

∣∣∣∣2 dx. (3.30)

Now, we need the following classical result, which states that the Laplace transform is

bounded in L2(0,∞).
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Lemma 3.2 (L2 boundedness of the Laplace transform). Suppose that Q(k) ∈ L2
k(0,∞).

Then, the map

Q(k) 7→
∫ ∞
0

e−kxQ(k)dk

is bounded from L2
k(0,∞) into L2

x(0,∞) with∥∥∥∥∫ ∞
0

e−kxQ(k)dk

∥∥∥∥
L2
x(0,∞)

6
√
π ‖Q(k)‖L2

k(0,∞). (3.31)

For the sake of completeness we shall include a proof of this lemma here. Also, we

mention that there are many proofs of this lemma in the literature. The oldest might

be the one found in Titchmarsh [Ti], §11.7 (11.7.4). A more recent one can be found in

Epstein and Schotland [ES]. The one given below was suggested by a communication with

Loukas Grafakos [G].

Proof. Observing that∫ ∞
0

e−kxQ(k)dk =

∫ ∞
0

e−kx/2k−1/4 · e−kx/2k1/4Q(k)dk

and applying the Cauchy-Schwarz inequality, we obtain∣∣∣ ∫ ∞
0

e−kxQ(k)dk
∣∣∣2 6 ∫ ∞

0
e−kxk−1/2dk ·

∫ ∞
0

e−kxk1/2|Q(k)|2dk

=
√
πx−1/2

∫ ∞
0

e−kxk1/2|Q(k)|2dk.

Combining the last inequality and Fubini’s theorem gives∥∥∥∥∫ ∞
0

e−kxQ(k)dk

∥∥∥∥2
L2
x(0,∞)

6
√
π

∫ ∞
0

∫ ∞
0

x−1/2e−kxk1/2|Q(k)|2dkdx

=
√
π

∫ ∞
0

(∫ ∞
0

x−1/2e−kxk1/2dx
)
|Q(k)|2dk

=
√
π

∫ ∞
0

√
π |Q(k)|2dk,

which is the desired inequality (3.31). �

Next, using Lemma 3.2 with Q(k) =
(
1 + k2

)β
2 |kĥ(k2)| in inequality (3.30), and then

making the change of variables τ = k2 ⇔ k = τ
1
2 = σ(τ), where σ(τ) is defined by (2.19),

we obtain

‖v1(t)‖2β .
∫ ∞
0

(
1 + k2

)β |kĥ(k2)|2dk

=

∫ ∞
0

(1 + |τ |)β|τ |
1
2 |ĥ(τ)|2dτ

2

6
1

2

∫ ∞
−∞

(1 + |τ |)β+
1
2 |ĥ(τ)|2dτ. (3.32)

Note, however, that for s > −1
2 we have

(1 + |τ |)2 6 2
(
1 + τ2

)
⇔ (1 + |τ |)

2s+1
2 6 2

2s+1
4
(
1 + τ2

) 2s+1
4 .
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Thus, recalling that m = 2β+1
4 we find

‖v1(t)‖2β 6 2
2β−3

4

∫ ∞
−∞

(
1 + τ2

)m |ĥ(τ)|2dτ = 2
2β−3

4 ‖h‖2Hm
t (R). (3.33)

The case s = bsc ∈ N. Whenever s = bsc = n ∈ N, then

‖v1(t)‖2Hs
x(0,∞) =

n∑
j=0

‖∂jxv1(t)‖2L2
x(0,∞). (3.34)

Differentiating formula (3.21) for v1(t) with respect to x, we get

∂jxv1(x, t) =

∫ ∞
0

e−kx[eik
2t(−k)jGh(k)]dk.

Then, applying Lemma 3.2 with Q(k) = eik
2t(−k)jGh(k) we obtain the estimate

‖∂jxv1(t)‖2L2
x(0,∞) 6 π

∥∥|k|jGh(k)
∥∥2
L2
k(0,∞)

= π
∥∥|k|jkĥ(k2)

∥∥2
L2
k(0,∞)

.

Furthermore, making the change of variables τ = k2 and estimating as before, we get

‖∂jxv1(t)‖2L2
x(0,∞) . ‖h‖

2

H
2j+1

4
t (R)

, j = 0, 1, . . . , n. (3.35)

Combining (3.35) and (3.34) gives the space estimate (3.12) for v1 in the case of s = bsc.

The case s = bsc+ β with bsc > 0 and 0 < β < 1. In this case, it suffices to estimate

‖∂bscx v1(t)‖2β. Working in a way similar to the first case, we obtain the following analog of

estimate (3.24)

‖∂bscx v1(t)‖2β 6
∫ ∞
0

∫ ∞
0
|Gh(k)| |Gh(l)| (kl)−

1
2
+bsc+β ∆

(
α,

1

α
, β
)
dldk

and the same computations as for the case 0 < s < 1 lead to estimate (3.12) for v1.

Proof of Lemma 3.1. Letting x = r cos θ, y = r sin θ in the definition (3.25) of ∆ yields

∆ = 2

∫ ∞
0

∫ π
2

0

e−(α+ 1
α)r cos θ − e−(αr sin θ+ r cos θ

α )

r1+2β |cos θ − sin θ|1+2β
rdθdr

= 2

∫ π
2

0

1

|cos θ − sin θ|1+2β

∫ ∞
0

[
e−(α+ 1

α)r cos θ − e−(α sin θ+ cos θ
α )r

]
r−2βdrdθ.

Furthermore, changing variables in the integrals with respect to r and rearranging gives

∆ = 2

(∫ ∞
0

e−ρρ−2βdρ

)∫ π
2

0

[(
α+ 1

α

)
cos θ

]−1+2β −
(
α sin θ + 1

α cos θ
)−1+2β

|cos θ − sin θ|1+2β
dθ.

Next, recall the integral representation of the Gamma function,

Γ(z)
.
=

∫ ∞
0

e−ρρz−1dρ, Re(z) > 0, (3.36)

which can be analytically continued for Re(z) < 0 via the formula

Γ(z)Γ(1− z) =
π

sin(πz)
.
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Using (3.36) and letting

D
(
α,

1

α
, β
) .

=

∫ π
2

0

[(
α+ 1

α

)
cos θ

]−1+2β −
(
α sin θ + 1

α cos θ
)−1+2β

|cos θ − sin θ|1+2β
dθ, (3.37)

we find

∆ =


2Γ(1− 2β)D

(
α,

1

α
, β
)
, 0 < β <

1

2
,

2π

sin(2πβ)Γ(2β)
D
(
α,

1

α
, β
)
,

1

2
< β < 1.

(3.38)

We will now compute D. Letting ν = tan θ, we have

D =

∫ ∞
0

(
α+ 1

α

)−1+2β −
(
αν + 1

α

)−1+2β

|1− ν|1+2β
dν,

which can be written as

D =

∫ 1

0

(
α+ 1

α

)−1+2β (
1 + ν−1+2β

)
−
(
α+ 1

α ν
)−1+2β −

(
αν + 1

α

)−1+2β

(1− ν)1+2β
dν.

Integrating, we obtain

D =
1

β

(
α+

1

α

)−1{
lim
ν→1

1

(1− ν)2β

[(
α+

1

α

)2β

−
(
α+

1

α
ν

)2β

−
(

1

α
+ αν

)2β

+

[(
α+

1

α

)
ν

]2β ]

−

[(
α+

1

α

)2β

− α2β −
(

1

α

)2β
]}

.

By l’Hôpital’s rule, the limit above is equal to zero. Thus,

D =
1

β

(
α+

1

α

)−1 [
α2β +

(
1

α

)2β

−
(
α+

1

α

)2β
]
. (3.39)

When α = O(1) then the square bracket in (3.39) is also O(1), while when α is large then

the square bracket is approximately equal to −(1/α)2β, which is small for β ∈ (0, 1). The

situation is analogous when α is small, because then 1
α is large and the expression for D

is symmetric in α and 1
α . Therefore, we have the estimate

|D| . 1

β

(
α+

1

α

)−1
. (3.40)

Inserting (3.39) in the expression (3.41) for ∆, we get

∆ =


Γ(1− 2β)

β

(
α+

1

α

)−1 [
α2β +

(
1

α

)2β

−
(
α+

1

α

)2β
]
, 0 < β <

1

2
,

π

sin(2πβ)Γ(2β)β

(
α+

1

α

)−1 [
α2β +

(
1

α

)2β

−
(
α+

1

α

)2β
]
,

1

2
< β < 1.

(3.41)
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Also, note that the expression valid for 1
2 < β < 1 makes sense even for β = 1

2 , since the

square bracket vanishes then. Thus, using estimate (3.40) we conclude that

∆ . cβ

(
α+

1

α

)−1
∀β ∈ (0, 1). �

Continuity of the map t 7→ v(t). To complete the proof of Theorem 5, part 1, we

need to show continuity of the map t 7→ v(t) in Hs
x(0,∞). For any sequence {tn} ⊂ [0, 2]

converging to t ∈ [0, 2], we have

v(x, tn)− v(x, t) = [v1(x, tn)− v1(x, t)] + [v2(x, tn)− v2(x, t)]

with v1 and v2 defined by (3.15), hence

‖v(tn)− v(t)‖Hs
x(0,∞) 6 ‖v1(tn)− v1(t)‖Hs

x(0,∞) + ‖v2(tn)− v2(t)‖Hs
x(0,∞). (3.42)

The second term in (3.42) can be estimated by using the Fourier transform definition of

the Sobolev norm. We have

‖v2(tn)− v2(t)‖2Hs
x(0,∞) 6

∫ ∞
−∞

(
1 + k2

)s ∣∣∣(e−ik2tn − e−ik2t)kĥ(−k2)
∣∣∣2 dk

6 4

∫ ∞
−∞

(
1 + k2

)s ∣∣∣kĥ(−k2)
∣∣∣2 dk

6 4‖h‖2Hm
t (R) <∞,

thus, by the dominated convergence theorem we find v2(tn) −−−−→
n→∞

v2(t) in Hs
x(0,∞).

Regarding the first term in (3.42), we use the L2 definition of the Sobolev norm. Com-

putations similar to those used for estimating v1 in (3.15) yield

‖v1(tn)− v1(t)‖2β .
∫ ∞
0

∫ ∞
0
|Gh(k)| |Gh(l)|

∣∣∣eik2tn − eik2t∣∣∣ ∣∣∣eil2tn − eil2t∣∣∣ (kl)− 1
2
+β∆(α,

1

α
, β)dldk

6 cβ

∫ ∞
0

∫ ∞
0
|Gh(k)| |Gh(l)| (kl)

β

k + l
dldk . cβ‖h‖2Hm

t (R) <∞,

where we have used estimates (3.29)-(3.33). Hence, by the dominated convergence theorem

we find ‖v1(tn)− v1(t)‖β −−−−→
n→∞

0. The proof for s = bsc+ β is similar. �

2. Proving the time estimates (3.13). First, we will prove that v and vx belong to

Hm
t (0, 2) and H

m− 1
2

t (0, 2), respectively. Starting from the UTM formula (3.10), we have

v(x, t) =
1

π

∫
∂D+

eikx−ik
2tkĥ(−k2)dk

=
1

π

∫ 0

i∞
eikx−ik

2tkĥ(−k2)dk +
1

π

∫ ∞
0

eikx−ik
2tkĥ(−k2)dk.

Moreover, the transformation τ = k2 ⇔ k = τ
1
2 = σ(τ), with σ(τ) defined by (2.19), gives

v(x, t) =
1

π

∫ 0

−∞
eiσ(τ)x−iτtĥ(−τ)

dτ

2
+

1

π

∫ ∞
0

eiσ(τ)x−iτtĥ(−τ)
dτ

2

=
1

2π

∫
R
eiτteiσ(−τ)xĥ(τ)dτ. (3.43)
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Therefore,

‖v(x)‖2Hm
t (R) =

∫
R

(
1 + τ2

)m ∣∣∣eiσ(−τ)xĥ(τ)
∣∣∣2 dτ.

Noting that for x ∈ (0,∞) and τ ∈ R∣∣∣eiσ(−τ)x∣∣∣ = e−xIm(σ(−τ)) = e−x
√
|τ | sin(arg(−τ)/2) 6 1,

we obtain the estimate

‖v(x)‖2Hm
t (R) 6

∫
R

(
1 + τ2

)m |ĥ(τ)|2dτ = ‖h‖2Hm
t (R).

Also, differentiating formula (3.43) we have

vx(x, t) =
1

2π

∫
R
eiσ(τ)x−iτtiτ

1
2 ĥ(−τ)dτ,

which implies

‖vx(x)‖2
H
m− 1

2
t (R)

=

∫
R

(
1 + τ2

)m− 1
2 |τ |

∣∣ĥ(τ)
∣∣2dτ

6
∫
R

(
1 + τ2

)m ∣∣ĥ(τ)
∣∣2dτ = ‖h‖2Hm

t (R).

Continuity of the maps x 7→ v(x) and x 7→ vx(x). We need to prove that for any

sequence {xn} ⊂ [0,∞) converging to x ∈ [0,∞), we have

‖v(xn)− v(x)‖Hm
t (0,2) −−−−−−−→

n→∞
0. (3.44)

Since

‖v(xn)− v(x)‖2Hm
t (R) =

∥∥∥ 1

2π

∫
R
e−iτt

[
eiσ(τ)xn − eiσ(τ)x

]
ĥ(−τ)dτ

∥∥∥2
Hm
t (R)

=

∫
R

(
1 + τ2

)m ∣∣∣eiσ(−τ)xn − eiσ(−τ)x∣∣∣2 ∣∣ĥ(τ)
∣∣2dτ

and ∫
R

(
1 + τ2

)m ∣∣∣eiσ(−τ)xn − eiσ(−τ)x∣∣∣2 ∣∣ĥ(τ)
∣∣2dτ 6 4‖h‖2Hm

t (R) <∞,

the limit (3.44) follows by the dominated convergence theorem. The continuity argument

for vx(x) ∈ Hm− 1
2

t (0, 2) is analogous.

3. Proving that v is a weak solution. The space C∞0 (R) is dense in the space Hm(R),

hence there exists a sequence {hn(t)} ⊂ C∞0 (R) such that ‖hn − h‖Hm(R) −−−−→
n→∞

0 with

h(t) ∈ Hm(R). What is more, the LS ibvp (3.9) with datum hn is well-posed and has

solution vn ∈ C∞([0, T ];S(0,∞)) given by the formula

vn(x, t) =
1

π

∫
∂D+

eikx−ik
2t kĥn(−k2)dk, x ∈ [0,∞), t ∈ [0, 2].

Thus, for all ϕ(x) ∈ C∞0 (R) such that ϕ(0) = 0 the sequence {vn(x, t)} satisfies the identity

d

dt
〈vn(t), φ〉L2

x(0,∞) = −〈vn(t), iφxx〉L2
x(0,∞) + ihn(t)φx(0).
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Taking the limit n→∞ in the above identity, we conclude that the function v defined by

equation (3.10) is a weak solution to the LS ibvp (3.9) in the sense of (3.14).

4. Proving that the initial and boundary conditions are satisfied. From the

well-posedness of the LS ibvp in Schwartz spaces it follows that vn(x, 0) = 0 and vn(0, t) =

hn(t). Moreover, by the density of C∞0 (0,∞) inHs(0,∞) we have ‖vn(x, 0)−v(x, 0)‖Hs
x(0,∞)

−−−−→
n→∞

0 thus ‖v(0, t)‖Hs
x(0,∞) −−−−→

n→∞
0. Also, the density of C∞0 (0, 2) in Hm(0, 2) implies

‖vn(0, t)− v(0, t)‖Hm
t (0,2) −−−−→

n→∞
0 so that ‖hn(t)− v(0, t)‖Hm

t (0,2) −−−−→
n→∞

0. However, we

have ‖hn(t)− h(t)‖Hm
t (0,2) −−−−→

n→∞
0 and hence, ‖v(0, t)− h(t)‖Hm

t (0,2) −−−−→
n→∞

0. �

Deducing Theorem 1 from Theorem 5. As noted earlier, when restricted in [0,∞)×
[0, T ], T < 1, the function v, which is the solution of ibvp (3.9) in the sense of Theorem

5, satisfies ibvp (3.2). Moreover, using estimate (3.8) we infer from estimates (3.12) and

(3.13) the space estimate

sup
t∈[0,T ]

‖v(t)‖Hs
x(0,∞) 6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
, s >

1

2
, (3.45)

and the time estimates

sup
x∈[0,∞)

‖v(x)‖
H

2s+1
4

t (0,T )
6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
, s >

1

2
, (3.46a)

sup
x∈[0,∞)

‖vx(x)‖
H

2s−1
4 (0,T )

6 cs
(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
, s >

1

2
. (3.46b)

Further, recall that by linearity the solution to the LS ibvp (1.1) is given by

u(x, t) = U(x, t) + v(x, t), x ∈ [0,∞), t ∈ [0, T ], (3.47)

where U satisfies the LS ivp (2.1) and v satisfies the reduced LS ibvp (3.9). Therefore, com-

bining Theorem 4 and Theorem 5 with estimates (3.12) and (3.13) replaced by estimates

(3.45) and (3.46), we obtain Theorem 1.

4. Solving the forced LS ibvp in Sobolev spaces

Having proved Theorem 1 for the LS ibvp (1.1), we now prove Theorem 2 for the

forced LS ibvp (1.15) with the same initial and boundary conditions, which establishes

well-posedness of this problem in Sobolev spaces. As noted in the Introduction, if s > 5
2

then additional compatibility conditions that involve the forcing should hold at x = t = 0.

These conditions are not the same with the corresponding conditions (1.6) for the LS ibvp;

in fact, combining the two families of conditions confines the forcing to a very special class

of functions in C([0, T ];Hs
x(0,∞)). Therefore, we restrict 1

2 < s 6 5
2 so that the only

compatibility condition enforced in both problems is condition (1.5).

Decomposition of ibvp (1.15). By linearity, the forced LS ibvp (1.15) can be decom-

posed into the following two problems.
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Problem 1: LS ibvp on [0,∞)× [0, T ]. This problem reads

iut + uxx = 0, x ∈ (0,∞), t ∈ (0, T ), T < 1, (4.1a)

u(x, 0) = u0(x) ∈ Hs
x(0,∞), x ∈ [0,∞), (4.1b)

u(0, t) = g0(t) ∈ H
2s+1

4
t (0, T ), t ∈ [0, T ], (4.1c)

and its solution is given by the UTM formula (1.17) as

u(x, t) = S
[
u0, g0, 0

]
(x, t)

=
1

2π

∫
R
eikx−ik

2t û0(k)dk − 1

2π

∫
∂D+

eikx−ik
2t û0(−k)dk

+
1

π

∫
∂D+

eikx−ik
2t kg̃0(k

2, T )dk. (4.2)

Also, thanks to Theorem 1 we have the space estimate

sup
t∈[0,T ]

∥∥S[u0, g0, 0](t)∥∥Hs
x(0,∞)

6 cs
(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
. (4.3)

Problem 2: Forced LS ibvp on [0,∞)×[0, T ] with zero data. The precise description

of this problem is given by

iut + uxx = f(x, t) ∈ C([0, T ];Hs
x(0,∞)), x ∈ (0,∞), t ∈ (0, T ), T < 1, (4.4a)

u(x, 0) = 0, x ∈ [0,∞), (4.4b)

u(0, t) = 0, t ∈ [0, T ], (4.4c)

and its solution can be expressed in terms of the solution to ibvp (4.1). Indeed, starting

from the UTM solution formula (1.17), we are able to write the solution to ibvp (4.4) as

u(x, t) = S
[
0, 0, f

]
(x, t)

= −i
{∫ t

0

[
1

2π

∫
R
eikx−ik

2(t−t′)f̂(k, t′)dk

]
dt′ +

∫ t

0

[
− 1

2π

∫
∂D+

eikx−ik
2(t−t′)f̂(−k, t′)dk

]
dt′
}

= −i
∫ t

0
S
[
f, 0, 0

]
(x, t− t′)dt′. (4.5)

Combining the solution formula (4.5) with estimate (4.3), we obtain the following space

estimate for ibvp (4.4):

sup
t∈[0,T ]

∥∥S[0, 0, f](t)∥∥
Hs
x(0,∞)

= sup
t∈[0,T ]

∥∥∥∥∫ t

0
S
[
f, 0, 0

]
(·, t− t′)dt′

∥∥∥∥
Hs
x(0,∞)

6 sup
t∈[0,T ]

∫ t

0

∥∥S[f, 0, 0](·, t− t′)∥∥
Hs
x(0,∞)

dt′

6 cs sup
t∈[0,T ]

∫ t

0

∥∥f(t′)
∥∥
Hs
x(0,∞)

dt′

6 cs T sup
t∈[0,T ]

‖f(t)‖Hs
x(0,∞) . (4.6)
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The solution u(x, t) to ibvp (1.15). For x ∈ [0,∞), t ∈ [0, T ], T < 1, the solution to

the forced LS ibvp (1.15) is given by the the formula

u(x, t) = Φf(x, t) = S
[
u0, g0, 0

]
(x, t) + S

[
0, 0, f

]
(x, t). (4.7)

Indeed, the function Φf satisfies the following.

(a) Forced LS equation:

i(Φf)t + (Φf)xx = i
(
S
[
u0, g0, 0

])
t
+
(
S
[
u0, g0, 0

])
xx

+ i
(
S
[
0, 0, f

])
t
+
(
S
[
0, 0, f

])
xx

= 0 + f(x, t) = f(x, t).

(b) Initial condition (1.15b):

Φf(x, 0) = S
[
u0, g0, 0

]
(x, 0) + S

[
0, 0, f

]
(x, 0) = u0(x) + 0 = u0(x).

(c) Boundary condition (1.15c):

Φf(0, t) = S
[
u0, g0, 0

]
(0, t) + S

[
0, 0, f

]
(0, t) = g0(t) + 0 = g0(t).

Therefore, the function Φf defined by (4.7) satisfies the forced LS ibvp (1.15). What is

more, combining the space estimates (4.3) and (4.6) we conclude that Φf(x) ∈ Hs
x(0,∞)

with the space estimate

sup
t∈[0,T ]

‖Φf(t)‖Hs
x(0,∞) 6 cs

(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )
+ T sup

t∈[0,T ]
‖f(t)‖Hs

x(0,∞)

)
. (4.8)

The continuity of the map t 7→ Φf(t) follows from Theorem 1, which takes care of

S
[
u0, g0, 0

]
, and a similar argument for S

[
0, 0, f

]
. Thus, u = Φf ∈ C([0, T ];Hs

x(0,∞))

and the proof of Theorem 2 is complete.

5. Well-posedness of the NLS ibvp in Sobolev spaces

We have now developed the tools needed for presenting the proof of Theorem 3, which

establishes well-posedness of the NLS ibvp (1.14). Using the UTM formula (4.7), we

define an iteration map for the solution, which we then show to be onto and a contraction

in the space C([0, T ∗];Hs
x(0,∞)) with T ∗ defined by equation (1.20). Having established

existence and uniqueness, we then complete the proof by showing that the data-to-solution

map is locally Lipschitz continuous.

A. Existence and uniqueness. Setting f(x, t) = −λu|u|2(x, t) in the solution (4.7) of

the forced LS ibvp, we obtain the iteration map

u 7→ Φu = Φu0,g0u
.
= S

[
u0, g0, 0

]
+ S

[
0, 0,−λu|u|2

]
. (5.1)

It now suffices to prove that the map u 7→ Φu is a contraction in the space

X = C([0, T ∗];Hs
x(0,∞)) (5.2)

equipped with the norm

‖u‖X = sup
t∈[0,T ∗]

‖u(t)‖Hs
x(0,∞) (5.3)

for an appropriate T ∗ with 0 < T ∗ 6 T .
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1. Showing that the map u 7→ Φu is onto X. From the triangle inequality and

estimates (4.3) and (4.6), we have

‖Φu‖X = sup
t∈[0,T ∗]

∥∥S[u0, g0, 0](t) + S
[
0, 0,−λu|u|2

]
(t)
∥∥
Hs
x(0,∞)

6 sup
t∈[0,T ∗]

∥∥S[u0, g0, 0](t)∥∥Hs
x(0,∞)

+ sup
t∈[0,T ∗]

∥∥S[0, 0,−λu|u|2](t)∥∥
Hs
x(0,∞)

6 cs
(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )

)
+ cs T

∗ sup
t∈[0,T ∗]

∥∥−λu|u|2(t)∥∥
Hs
x(0,∞)

6 cs
(
‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )
+ |λ|T ∗ ‖u‖3X

)
, (5.4)

with the last inequality due to the algebra property in Hs
x(0,∞) for s > 1

2 .

Consider the ball B(0, r) = {u ∈ X : ‖u‖X 6 r} with radius

r = 2cs ‖(u0, g0)‖D , (5.5)

where the norm ‖·‖D in the data space is defined by

‖(u0, g0)‖D
.
= ‖u0‖Hs

x(0,∞) + ‖g0‖
H

2s+1
4

t (0,T )
. (5.6)

It then follows from estimate (5.4) that in order to have ‖Φu‖X 6 r for ‖u‖X 6 r it

suffices to have some 0 < T ∗ 6 T satisfying the onto condition

r

2
+ cs|λ|T ∗ r3 6 r ⇔ T ∗ 6

1

8c3s|λ| ‖(u0, g0)‖
2
D

. (5.7)

2. Showing that the map u 7→ Φu is a contraction in X. We shall show that for

any u1, u2 ∈ X we have

‖Φu1 − Φu2‖X 6
1

2
‖u1 − u2‖X . (5.8)

We compute

Φu1 − Φu2 =
(
S
[
u0, g0, 0

]
+ S

[
0, 0,−λu1|u1|2

])
−
(
S
[
u0, g0, 0

]
+ S

[
0, 0,−λu2|u2|2

])
= S

[
0, 0,−λ

(
u1|u1|2 − u2|u2|2

) ]
,

thus, using estimate (4.6) we find

‖Φu1 − Φu2‖X = sup
t∈[0,T ∗]

∥∥S[0, 0,−λ (u1|u1|2 − u2|u2|2) ](t)∥∥Hs
x(0,∞)

6 cs |λ|T ∗ sup
t∈[0,T ∗]

∥∥(u1|u1|2 − u2|u2|2) (t)
∥∥
Hs
x(0,∞)

.

Next, note that

u1|u1|2 − u2|u2|2 =
(
|u1|2 + |u2|2

)
(u1 − u2) + u2u1(u1 − u2),

hence, by the algebra property we get

‖Φu1 − Φu2‖X 6 cs|λ|T
∗ (‖u1‖X + ‖u2‖X

)2 ‖u1 − u2‖X . (5.9)
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To show that u 7→ Φu is a contraction on B(0, r) ⊂ X, with r defined by equation (5.5),

it suffices to show that there exists 0 < T ∗ 6 T satisfying the contraction condition

cs|λ|T ∗ (r + r)2 6 1
2 which after substituting for r becomes

T ∗ 6
1

32c3s |λ| ‖(u0, g0)‖
2
D

. (5.10)

Indeed, estimate (5.9) together with condition (5.10) imply the desired contraction in-

equality (5.8) on B(0, r).

The onto condition (5.7) and the contraction condition (5.10) are both satisfied if we

choose

T ∗ = min

{
T,

1

32c3s |λ| ‖(u0, g0)‖
2
D

}
. (5.11)

Then, for s > 1
2 the map u 7→ Φu with Φu defined by (5.1) is both onto and a contraction

in B(0, r) ⊂ X. Hence, by the contraction mapping theorem it has a unique fixed point in

B(0, r), i.e. the equation u = Φu, which is an integral equation for the NLS ibvp (1.14),

has a unique solution u ∈ B(0, r) ⊂ X with r defined by equation (5.5) and lifespan T ∗

given by equation (5.11).

B. Continuity of the data-to-solution map. To complete the proof of well-posedness

of the NLS on the half-line, it remains to show that the data-to-solution map

Hs
x(0,∞)×H

2s+1
4

t (0, T ) 3 (u0, g0) 7→ u ∈ X = C([0, T ∗];Hs
x(0,∞))

with lifespan T ∗ given by equation (5.11) is continuous. In fact, it turns out that this map

is locally Lipschitz.

Let (u0, g0) and (v0, h0) be two data in a ball Bρ ⊂ D of radius ρ > 0, whose centre

is at a distance r from the origin, and denote by u = Φu0,g0u and v = Φv0,h0v be the

corresponding solutions to the NLS ibvp. As we have seen above, the lifespan of u, which

we denote by Tu, is equal to

Tu = min

{
T,

1

32c3s |λ| ‖(u0, g0)‖2D

}
and the lifespan of v is equal to

Tv = min

{
T,

1

32c3s |λ| ‖(v0, h0)‖2D

}
.

Since max
{
‖(u0, g0)‖D, ‖(v0, h0)‖D

}
6 r + ρ, it follows that

min
{
Tu, Tv

}
> min

{
T,

1

32c3s |λ| (r + ρ)2

}
.
= Tc. (5.12)

Since both Tu and Tv are bigger than Tc, the solutions u and v both exist for 0 6 t 6 Tc.
For this common lifespan Tc, we define

Xc = C([0, Tc];H
s
x(0,∞)).
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Clearly, Xc ⊂ Xu and Xc ⊂ Xv, where Xu and Xv are defined by (5.2) with T ∗ replaced

by Tu and Tv respectively. We now determine a ball B(0, rc) ⊂ Xc such that for any

u, v ∈ B(0, rc) with data in the ball Bρ it follows that

‖u− v‖Xc 6 2cs ‖(u0, g0)− (v0, h0)‖D . (5.13)

Since u and v are obtained as fixed points of the maps u 7→ Φu and v 7→ Φv in Xu and

Xv respectively, we have

‖u− v‖Xc = ‖Φu− Φv‖Xc
=
∥∥∥(S[u0, g0, 0]+ S

[
0, 0,−λu|u|2

])
−
(
S
[
v0, h0, 0

]
+ S

[
0, 0,−λv|v|2

])∥∥∥
Xc

6
∥∥S[u0 − v0, g0 − h0, 0]∥∥Xc +

∥∥S[0, 0, λ (u|u|2 − v|v|2) ]∥∥
Xc

from which we get the estimate

‖u− v‖Xc 6 cs ‖(u0, g0)− (v0, h0)‖D + cs|λ|Tc
(
‖u‖Xc + ‖v‖Xc

)2 ‖u− v‖Xc .
Since u, v ∈ B(0, rc) ⊂ Xc, the above implies

‖u− v‖Xc 6 cs ‖(u0, g0)− (v0, h0)‖D + cs|λ|Tc · 4r2c · ‖u− v‖Xc .

Rearranging, we get

‖u− v‖Xc 6
cs

1− 4cs|λ|Tc r2c
‖(u0, g0)− (v0, h0)‖D

provided that 4cs|λ|Tc r2c < 1 with Tc defined by equation (5.12). Choosing

rc =
1√
2
· 1

2
√
cs|λ|Tc

= max

{
1√
2
· 1

2
√
cs|λ|T

, 2cs (r + ρ)

}
(5.14)

gives the desired inequality (5.13). Thus, local Lipschitz continuity of the data-to-solution

map has been established. �
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