
Exploring Automatically Generated

Platforms in High Performance FPGAs

Panagiotis Skrimponisb, Georgios Zindrosa, Ioannis Parnassosa, Muhsen

Owaidab, Nikolaos Bellasa, and Paolo Ienneb

a Electrical and Computer Engineering Department, University of Thessaly,

Greece
bEcole Polytechnique Federale de Lausanne, Switzerland

Abstract. Incorporating FPGA-based acceleration in high performance systems
demands efficient generation of complete system architecture with multiple

accelerators, memory hierarchies, bus structures and interfaces. In this work we

explore a set of heuristics for complete system generation, with the objective of
developing automatable methodology for system level architectural exploration

and generation. Our experimental analysis on two test cases demonstrates that

applying a set of system optimization heuristics incrementally on a baseline system
configuration, we can converge to efficient system designs and reach target

performance.

Keywords. FPGA, High Level Synthesis

1. INTRODUCTION

Recent advances in FPGA technology and High Level Synthesis (HLS)

methodologies have placed reconfigurable systems on the roadmap of heterogeneous

High Performance Computing (HPC). FPGA accelerators offer superior performance,

power and cost characteristics compared to a homogeneous CPU-based platform, and

are more energy efficient than GPU platforms.

However, the biggest obstacle for adoption of FPGA technology in HPC platforms

is that FPGA programming still requires intimate knowledge of low-level hardware

design and long development cycles. These characteristics make HDLs an unsuitable

technology to implement an HPC application on an FPGA.

On the other hand, HLS tools allow designers to use high-level languages and

programming models such as C/C++ and OpenCL [4][5]. By elevating the hardware

design process at the level of software development, HLS not only allows quick

prototyping, but also enables architectural exploration. Most of the HLS tools offer

optimization directives to inform the HLS synthesis engine about how to optimize parts

of the source code. The HLS synthesizer implements hardware accelerators optimized

for performance or area according to these directives.

This approach does not exploit the capability of modern FPGAs to implement

architectures that may include multiple hardware accelerators, memory hierarchies, bus

structures and interfaces. What is really needed is a methodology to automatically

realize and evaluate multiple-accelerator architectures implementing complex software

applications. The complexity of such a methodology is high owing to the fact that

reconfigurable platforms offer multiple degrees of design freedom and a potential large

set of pareto-optimal designs.

In this paper we introduce a systematic architectural evaluation of application

mapping onto High Performance FPGAs that operate as accelerators to a Linux box.

The focus is to exploit all the interesting system-level architectural scenarios, in order

to build a tool flow that can choose automatically the best system-level architecture for

each application. Based on the experimental evaluation, we want to gain insight of

optimal application-dependent architectures so that we later automate this process. We

compare the performance of all hardware solutions with the performance of the

software code running on a high performance CPU (the Host Unit).

Several research efforts studied the problem of Host-FPGA interface and on-chip

communication channels. Vipin et al. [1], developed a framework for using PCIe

communication between Host CPU and FPGA. He also used HLS standard bus

interfaces for on chip communications. However, it overlooked the customization of

the bus interfaces, as well as custom memory hierarchies. Other recent works

considered generating latency insensitive channels [2] and shared memories [3]

between multiple FPGA accelerators. In this work we seek further level of

customization for the system component.

2. DESIGN SPACE EXPLORATION

Listing 1 shows the pseudocode of the Blur filter, one of the applications under

evaluation. The algorithm first applies a horizontal and then a vertical 3-tap low pass

filter to an incoming image, temporarily storing the output of the horizontal filter to the

memory. This pseudo code is optimized for a CPU execution, not for a hardware

design, which leads to drawbacks when it is processed by HLS tools. This code results

into two hardware accelerators, which have to communicate via a large memory

implemented either as an external DRAM or as an on-chip BRAM (if there is enough

BRAM in the FPGA). In order to incorporate FPGAs as part of a modern

heterogeneous system, we exploited the standardization of communication abstractions

provided by modern high-level synthesis tools like Vivado HLS to create our adaptive

system.

The dark shaded logic of Fig. 1 is generated by the Vivado toolset, based on

instructions by the system developer. Two accelerators are instantiated and are

connected with a BRAM memory through an AXI4-master interconnect. This baseline

blur_hor:

for (i = 0; i < Height; i++)

 for (j = 0; j < Width; j++)

 tmp(i,j)=(inp(i,j-

1)+inp(i,j)+inp(i,j+1)/3

blur_ver:

for (i = 0; i < Height; i++)

 for (j = 0; j < Width; j++)

 out(i,j)=(tmp(i-

1,j)+tmp(i,j)+tmp(i+1,j)/3

Listing 1. Horizontal and Vertical Blur filter

architecture is extended by automatically exploring the number and type of the various

resources. Such resources include the accelerators in terms of throughput, area, latency

and number. It also includes the bus structure and number of separate buses, the

number and type of memories, and the interface to the Host unit.

 In addition to the customizable part of the architecture, extra resources are

required for communication with the Host unit. We use an open-source framework,

RIFFA to provide an abstraction for software developers to access the FPGA as a

PCIe-based accelerator [6].

The RIFFA hardware implements the PCIe Endpoint protocol so that the user does

not need to get involved with the connectivity details of the accelerator. From the

accelerator side, RIFFA provides a set of streaming channel interfaces that send and

receive data between the CPU main memory and the customizable logic. On the Host

unit, the RIFFA 2.0 architecture is a combination of a kernel device driver and a set of

language bindings. RIFFA provides a very simple API to the user that allows for

accessing individual channels for communicating data to the accelerator logic.

Figure 2 shows two indicative architectural scenarios, expanding the baseline

architecture of Fig. 1. We can effectively duplicate the customizable logic using an

extra RIFFA channel (Figure 2i). Even better, the streaming, point-to-point nature of

the Blur application allows us to use the AXI4-Stream protocol to channel data

between consumer and producers (Figure 2ii). Some configurations may use external

DDR3 memory (which includes an FPGA DDR3 memory controller) to be able to

accommodate larger images at the cost of increasing latency and worse performance.

To navigate through the large design space smartly, we devised a set of heuristics for

making design decisions:

Figure 1. Baseline platform architecture used for our

experimental evaluation. The dark shaded area shows the

customizable logic.

1. Keep data local as close as possible to the accelerator. The goal here is to minimize

read/write latency between the accelerator and data memory.

2. Minimize shared resources between independent accelerators. Following this

guideline helps eliminating collisions between multiple accelerators while accessing

communication channels and memory ports.

3. Overlap data transfers with accelerators execution. The objective here is to

minimize accelerators idle time waiting for data to be available.

Our design space exploration approach starts from the baseline architecture of Fig.

1. We then incrementally make design decisions while considering the aforementioned

heuristics and evaluating the effects of the taken decisions on overall system

performance.

3. EXPERIMENTAL EVALUATION

3.1. Methodology

In this section, we present our architectural exploration study for two applications

shown in Table 1. For each application, we have laid out a multitude of architectural

scenarios spanning different points at the area versus performance space. Software code

is optimized with HLS pragmas (e.g., pipeline) with minimal code changes. We use

Vivado HLS 2014.4 for hardware implementations on the VC707 evaluation board

(XC7VX485T FPGA device). All results are reported after placement and routing. The

same C code is executed in an E5520 Intel Xeon quad-core processor running at 2.27

GHz and the performance results are compared. Besides the Blur filter already

described in the previous section, we have evaluated a Monte Carlo simulation

application.

(i)

(ii)

Figure 2. Two interesting architectural scenarios. (i) Duplication of the baseline

architecture using two RIFFA channels. (ii) Using AXI streaming interface between RIFFA

channels, the two accelerators and the DRAM.

Monte Carlo (MC) was developed to provide an alternative method of approaching

multi-domain, multi-physics problems. It breaks down a single Partial Differential

Equation (PDE) problem to produce a set of intermediate problems. The core kernel of

this application performs random walks from initial points in a 2D grid to estimate the

boundary conditions of the intermediate problems. MC is a heavily compute bound

application with double precision arithmetic operations and calls to mathematical

libraries for FP arithmetic, trigonometric and logarithmic computations, etc. It has

minimal bandwidth requirements.

3.2. Results

Figure 3 presents the performance results for the two test cases each with different

implementation scenarios. Table 2 shows the area requirements of each platform.

Blur. Six implementation scenarios are studied for the Blur application. The first

scenario represents the baseline architecture in Fig. 1 (bram_naive_1_chnl). The

host CPU sends a single row for the horizontal blur kernel for processing and waits for

the result from the accelerator before sending the next row until the entire image is

processed. The same is done for the vertical blur, but here 3 rows are needed for the

vertical blur to start. This scenario is reasonable when there is not enough on-chip or

off-chip memory to save the whole image, then we partition the image into smaller

partitions that fit on the available memory resources. Another version of this scenario

(bram_naive_2_chnl) replicates the hardware of a single RIFFA channel on 2

channels to exploit parallelism in the Blur application. While the second scenario

Table 1. Applications used for architectural exploration

App. Description Input Set

Monte

Carlo

Monte Carlo

simulations in a 2D

space

120 Points, 5000

Walks per point

Blur Blur 2D filter 4096×4096 image

(i) (b)

Figure 3. Experimental performance results for the Blur and Monte-Carlo applications. The numbers above the bars are improvement over

the optimized CPU implementation.

improves on the performance of the BRAM naive implementation it is still worse than

that of the optimized CPU implementation. Sending small chunks of data over the PCIe

is not efficient because we pay the overhead of initiating a PCIe read/write transaction

many times. As a result, the PCIe transactions occupy two thirds of the total execution

time.

 Scenario three of the Blur (ddr_naive_1_chnl) makes use of the off-chip DDR

to store the whole image instead of partitioning it into multiple portions. Using a DDR

provides few benefits; The PCIe read/write transactions consume less time compared to

the first scenarios because we eliminate the overhead of initiating PCIe transactions.

The second benefit of the DDR is that we do not need to send the horizontal blur output

back to the host CPU, but keep it in the DDR for the vertical blur to process it, then

write back to the host CPU the result of the vertical blur. As such, the third scenario

achieves improvement over optimized CPU time.

To improve performance of scenario #3, we allow the horizontal blur to start as

soon as the first row of the image is stored in the DDR and not wait for the whole

image to be loaded. We also allow writing data back to the host CPU even before the

vertical blur accelerator finishes execution. This is demonstrated in the fourth scenario

(ddr_overlapped_1_chnl). The overlapping of accelerators execution with FPGA-

Host data transfers is possible because of the regular access patterns of the blur

kernels. While this scenario eliminates most data transfers overhead, moving data

between DDR and the accelerators introduces a non-negligible overhead.

To improve further and minimize the DDR-Accelerator communication overhead,

we use AXI-stream interfaces for horizontal and vertical blur accelerators

(ddr_streaming_1_chnl, ddr_streaming_2_chnl). Instead of storing the image

in the DDR, the horizontal blur accelerator uses AXI-stream interface to read data from

the channel FIFOs and write result to the DDR. The vertical blur will read data from

the DDR, process it and send the results directly to the RIFFA channel through an

AXI-stream interface. In this scenario we eliminate 60% of the DDR-Accelerator data

Table 2. Area results for the various configurations in terms of resource utilization

for the XC7VX485T FPGA

Benchmark LUT FF BRAM DSP48

BLUR

bram_naive_1_chnl 15% 10% 5% 11%

bram_naive_2_chnl 28% 20% 10% 23%

ddr_naive_1_chnl 20% 15% 6% 5%

ddr_overlapped_1_chnl 20% 15% 6% 5%

ddr_streaming_1_chnl 13% 9% 4% 3%

ddr_streaming_2_chnl 21% 14% 6% 6%

Monte-Carlo (MC)

MC_1_walk_1_point_1_chnl 8% 5% 2% 5%

MC_1_walk_1_point_2_chnl 13% 9% 3% 9%

MC_all_walks_1_point_1_chnl 9% 7% 2% 5%

MC_all_walks_1_point_2_chnl 16% 12% 3% 9%

movements. This is possible because of the streaming nature of the blur kernels. This

scenario achieves the best performance compared to the CPU implementation.

Moreover, this scenario consumes less area (see Table 2) than the DDR naive and

overlapped implementations, which allows allocating more replicas of the accelerators

to exploit parallelism and improve performance as the case in

ddr_streaming_2_chnl.

Monte-Carlo simulation. MC is a compute intensive kernel with minimal

memory accesses. Hence the different implementation scenarios are made of different

accelerator configurations and by instantiating multiple instances of the accelerator. In

the baseline scenario, the accelerator is configured to perform a single walk of a single

point per invocation, and a single accelerator is allocated

(MC_1_walk_1_point_1_chnl). This scenario performs much worse than the CPU

implementation. Double precision operations have larger latency on FPGAs than a

CPU. Also, Vivado HLS libraries of trigonometric operators (sin, cos) are not pipelined

and less efficient than their CPU counterparts. The strength of the FPGA is to perform

more computations in parallel. Unfortunately, the MC kernel computations of a single

walk are sequential and cannot be parallelized. As such, the FPGA baseline

implementation performs badly. To improve performance we need to exploit coarser-

grain parallelism across multiple points and walks. The second scenario allocates two

accelerator instances to parallelize the computations of walks for a single point

(MC_1_walk_1_point_2_chnl). It reduces the execution time to half, but still worse

than the CPU. We need to allocate around 40 accelerator replicas to reach the CPU

performance.

Another aspect to improve on is to minimize the accelerator invocation overhead

by coarsening the computations granularity per a single accelerator instance. This

allows for pipelining computations of multiple walks, which will have a strong impact

on performance. The third scenario minimizes accelerator invocation overhead by

configuring the accelerator to perform all the walks of a single point per invocation

(MC_all_walks_1_point_1_chnl). The fourth scenario allocates five accelerators

to parallelize computations (MC_all_walks_1_point_5_chnl) across multiple

points. The last scenario saturates the FPGA resources and almost achieves near CPU

performance.

4. CONCLUSION

Reaching target performance does not have a trivial solution. Customizing the

accelerator configuration while using a fixed system architecture is not enough to

compete with state-of-the-art CPUs. It is essential to customize the system architecture

to reach this goal, especially in applications where data movement overhead dominates

overall performance. In this effort we studied few directions in system-level

architectural exploration to orchestrate an approach for customizing system-level

components, such as number and type of bus interfaces, memory hierarchies, and

number of accelerators. We considered different data transfer protocols as a way to

minimize data movement overhead. We intend to study other types of applications to

extract more efficient ways of system customization as a preliminary for building an

automatable methodology for custom system generation.

5. ACKNOWLEDGMENTS

This research has been co-financed by the European Union (European Social Fund

- ESF) and Greek national funds through the Operational Program "Education and

Lifelong Learning" of the National Strategic Reference Framework (NSRF) – Research

Funding Program: THALES grant number MIS 379416.

REFERENCES

[1] K. Vipin, S. Shreejith, D. Gunasekera, S. A. Fahmy, N. Kapre. System-Level FPGA

Device Driver with High-Level Synthesis Support. International Conference on Field

Programmable Technology (FPT), Kyoto, Japan, December 9-11, 2013.

[2] K. Fleming, H. J. Yang, M. Adler, J. Emer. The LEAP FPGA Operating System. 24th

International Conference on Field Programmable Logic and Applications (FPL). Munich,

Germany, September 2-4, 2014.

[3] H. J. Yang, K. Fleming, M. Adler, J. Emer. LEAP Shared Memories: Automating the

Construction of FPGA Coherent Memories. 22nd International Symposium on Field

Programmable Custom Computing Machines (FCCM). Boston, USA, May 11-13, 2014.

[4] Vivado Design Suite User Guide: High Level Synthesis. Online at www.xilinx.com.

[5] Altera OpenCL SDK Programming Guide. Online at www.altera.com.

[6] M. Jacobsen, R. Kastner. RIFFA 2.0: A reusable integration framework for FPGA

accelerators. 23rd International Conference on Field programmable Logic and Applications

(FPL). Porto, Portugal, September 2-4, 2013.

