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Abstract. Incorporating FPGA-based acceleration in high performance systems 
demands efficient generation of complete system architecture with multiple 

accelerators, memory hierarchies, bus structures and interfaces. In this work we 

explore a set of heuristics for complete system generation, with the objective of 
developing automatable methodology for system level architectural exploration 

and generation. Our experimental analysis on two test cases demonstrates that 

applying a set of system optimization heuristics incrementally on a baseline system 
configuration, we can converge to efficient system designs and reach target 

performance. 
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1. INTRODUCTION 

Recent advances in FPGA technology and High Level Synthesis (HLS) 

methodologies have placed reconfigurable systems on the roadmap of heterogeneous 

High Performance Computing (HPC). FPGA accelerators offer superior performance, 

power and cost characteristics compared to a homogeneous CPU-based platform, and 

are more energy efficient than GPU platforms.  

However, the biggest obstacle for adoption of FPGA technology in HPC platforms 

is that FPGA programming still requires intimate knowledge of low-level hardware 

design and long development cycles. These characteristics make HDLs an unsuitable 

technology to implement an HPC application on an FPGA.  

On the other hand, HLS tools allow designers to use high-level languages and 

programming models such as C/C++ and OpenCL [4][5]. By elevating the hardware 

design process at the level of software development, HLS not only allows quick 

prototyping, but also enables architectural exploration. Most of the HLS tools offer 

optimization directives to inform the HLS synthesis engine about how to optimize parts 

of the source code. The HLS synthesizer implements hardware accelerators optimized 

for performance or area according to these directives.  

This approach does not exploit the capability of modern FPGAs to implement 

architectures that may include multiple hardware accelerators, memory hierarchies, bus 

structures and interfaces. What is really needed is a methodology to automatically 

realize and evaluate multiple-accelerator architectures implementing complex software 

applications. The complexity of such a methodology is high owing to the fact that 



reconfigurable platforms offer multiple degrees of design freedom and a potential large 

set of pareto-optimal designs.  

In this paper we introduce a systematic architectural evaluation of application 

mapping onto High Performance FPGAs that operate as accelerators to a Linux box. 

The focus is to exploit all the interesting system-level architectural scenarios, in order 

to build a tool flow that can choose automatically the best system-level architecture for 

each application. Based on the experimental evaluation, we want to gain insight of 

optimal application-dependent architectures so that we later automate this process. We 

compare the performance of all hardware solutions with the performance of the 

software code running on a high performance CPU (the Host Unit). 

Several research efforts studied the problem of Host-FPGA interface and on-chip 

communication channels. Vipin et al. [1], developed a framework for using PCIe 

communication between Host CPU and FPGA. He also used HLS standard bus 

interfaces for on chip communications. However, it overlooked the customization of 

the bus interfaces, as well as custom memory hierarchies. Other recent works 

considered generating latency insensitive channels [2] and shared memories [3] 

between multiple FPGA accelerators. In this work we seek further level of 

customization for the system component.  

2. DESIGN SPACE EXPLORATION 

Listing 1 shows the pseudocode of the Blur filter, one of the applications under 

evaluation. The algorithm first applies a horizontal and then a vertical 3-tap low pass 

filter to an incoming image, temporarily storing the output of the horizontal filter to the 

memory. This pseudo code is optimized for a CPU execution, not for a hardware 

design, which leads to drawbacks when it is processed by HLS tools. This code results 

into two hardware accelerators, which have to communicate via a large memory 

implemented either as an external DRAM or as an on-chip BRAM (if there is enough 

BRAM in the FPGA). In order to incorporate FPGAs as part of a modern 

heterogeneous system, we exploited the standardization of communication abstractions 

provided by modern high-level synthesis tools like Vivado HLS to create our adaptive 

system. 

The dark shaded logic of Fig. 1 is generated by the Vivado toolset, based on 

instructions by the system developer. Two accelerators are instantiated and are 

connected with a BRAM memory through an AXI4-master interconnect. This baseline 

blur_hor:  

for (i = 0; i < Height; i++) 

 for (j = 0; j < Width; j++) 

 tmp(i,j)=(inp(i,j-

1)+inp(i,j)+inp(i,j+1)/3 

 

blur_ver:  

for (i = 0; i < Height; i++) 

 for (j = 0; j < Width; j++) 

 out(i,j)=(tmp(i-

1,j)+tmp(i,j)+tmp(i+1,j)/3 

Listing 1. Horizontal and Vertical Blur filter 



architecture is extended by automatically exploring the number and type of the various 

resources. Such resources include the accelerators in terms of throughput, area, latency 

and number. It also includes the bus structure and number of separate buses, the 

number and type of memories, and the interface to the Host unit.  

 In addition to the customizable part of the architecture, extra resources are 

required for communication with the Host unit. We use an open-source framework, 

RIFFA to provide an abstraction for software developers to access the FPGA as a 

PCIe-based accelerator [6].  

The RIFFA hardware implements the PCIe Endpoint protocol so that the user does 

not need to get involved with the connectivity details of the accelerator. From the 

accelerator side, RIFFA provides a set of streaming channel interfaces that send and 

receive data between the CPU main memory and the customizable logic. On the Host 

unit, the RIFFA 2.0 architecture is a combination of a kernel device driver and a set of 

language bindings. RIFFA provides a very simple API to the user that allows for 

accessing individual channels for communicating data to the accelerator logic.  

 

Figure 2 shows two indicative architectural scenarios, expanding the baseline 

architecture of Fig. 1. We can effectively duplicate the customizable logic using an 

extra RIFFA channel (Figure 2i). Even better, the streaming, point-to-point nature of 

the Blur application allows us to use the AXI4-Stream protocol to channel data 

between consumer and producers (Figure 2ii). Some configurations may use external 

DDR3 memory (which includes an FPGA DDR3 memory controller) to be able to 

accommodate larger images at the cost of increasing latency and worse performance. 

To navigate through the large design space smartly, we devised a set of heuristics for 

making design decisions: 

 
Figure 1. Baseline platform architecture used for our 

experimental evaluation. The dark shaded area shows the 

customizable logic.  



1. Keep data local as close as possible to the accelerator. The goal here is to minimize 

read/write latency between the accelerator and data memory. 

2. Minimize shared resources between independent accelerators. Following this 

guideline helps eliminating collisions between multiple accelerators while accessing 

communication channels and memory ports. 

3. Overlap data transfers with accelerators execution. The objective here is to 

minimize accelerators idle time waiting for data to be available. 

Our design space exploration approach starts from the baseline architecture of Fig. 

1. We then incrementally make design decisions while considering the aforementioned 

heuristics and evaluating the effects of the taken decisions on overall system 

performance. 

 

3. EXPERIMENTAL EVALUATION  

3.1. Methodology 

In this section, we present our architectural exploration study for two applications 

shown in Table 1. For each application, we have laid out a multitude of architectural 

scenarios spanning different points at the area versus performance space. Software code 

is optimized with HLS pragmas (e.g., pipeline) with minimal code changes. We use 

Vivado HLS 2014.4 for hardware implementations on the VC707 evaluation board 

(XC7VX485T FPGA device). All results are reported after placement and routing. The 

same C code is executed in an E5520 Intel Xeon quad-core processor running at 2.27 

GHz and the performance results are compared. Besides the Blur filter already 

described in the previous section, we have evaluated a Monte Carlo simulation 

application. 

 

 

 
(i) 

 

 
(ii) 

Figure 2. Two interesting architectural scenarios. (i) Duplication of the baseline 

architecture using two RIFFA channels. (ii) Using AXI streaming interface between RIFFA 

channels, the two accelerators and the DRAM.  



 

 

 

 

 

 

 

 

 

Monte Carlo (MC) was developed to provide an alternative method of approaching 

multi-domain, multi-physics problems. It breaks down a single Partial Differential 

Equation (PDE) problem to produce a set of intermediate problems. The core kernel of 

this application performs random walks from initial points in a 2D grid to estimate the 

boundary conditions of the intermediate problems. MC is a heavily compute bound 

application with double precision arithmetic operations and calls to mathematical 

libraries for FP arithmetic, trigonometric and logarithmic computations, etc. It has 

minimal bandwidth requirements.  

3.2. Results 

Figure 3 presents the performance results for the two test cases each with different 

implementation scenarios. Table 2 shows the area requirements of each platform. 

Blur. Six implementation scenarios are studied for the Blur application. The first 

scenario represents the baseline architecture in Fig. 1 (bram_naive_1_chnl). The 

host CPU sends a single row for the horizontal blur kernel for processing and waits for 

the result from the accelerator before sending the next row until the entire image is 

processed. The same is done for the vertical blur, but here 3 rows are needed for the 

vertical blur to start. This scenario is reasonable when there is not enough on-chip or 

off-chip memory to save the whole image, then we partition the image into smaller 

partitions that fit on the available memory resources. Another version of this scenario 

(bram_naive_2_chnl) replicates the hardware of a single RIFFA channel on 2 

channels to exploit parallelism in the Blur application. While the second scenario 

Table 1. Applications used for architectural exploration 

App. Description Input Set 

Monte 

Carlo 

Monte Carlo 

simulations in a 2D 

space 

120 Points, 5000 

Walks per point 

Blur Blur 2D filter 4096×4096 image 

  
(i) (b) 

Figure 3. Experimental performance results for the Blur and Monte-Carlo applications. The numbers above the bars are improvement over 

the optimized CPU implementation. 



improves on the performance of the BRAM naive implementation it is still worse than 

that of the optimized CPU implementation. Sending small chunks of data over the PCIe 

is not efficient because we pay the overhead of initiating a PCIe read/write transaction 

many times. As a result, the PCIe transactions occupy two thirds of the total execution 

time. 

 Scenario three of the Blur (ddr_naive_1_chnl) makes use of the off-chip DDR 

to store the whole image instead of partitioning it into multiple portions. Using a DDR 

provides few benefits; The PCIe read/write transactions consume less time compared to 

the first scenarios because we eliminate the overhead of initiating PCIe transactions. 

The second benefit of the DDR is that we do not need to send the horizontal blur output 

back to the host CPU, but keep it in the DDR for the vertical blur to process it, then 

write back to the host CPU the result of the vertical blur. As such, the third scenario 

achieves improvement over optimized CPU time. 

To improve performance of scenario #3, we allow the horizontal blur to start as 

soon as the first row of the image is stored in the DDR and not wait for the whole 

image to be loaded. We also allow writing data back to the host CPU even before the 

vertical blur accelerator finishes execution. This is demonstrated in the fourth scenario 

(ddr_overlapped_1_chnl). The overlapping of accelerators execution with FPGA- 

 

Host data transfers is possible because of the regular access patterns of the blur 

kernels. While this scenario eliminates most data transfers overhead, moving data 

between DDR and the accelerators introduces a non-negligible overhead.  

To improve further and minimize the DDR-Accelerator communication overhead, 

we use AXI-stream interfaces for horizontal and vertical blur accelerators 

(ddr_streaming_1_chnl, ddr_streaming_2_chnl). Instead of storing the image 

in the DDR, the horizontal blur accelerator uses AXI-stream interface to read data from 

the channel FIFOs and write result to the DDR. The vertical blur will read data from 

the DDR, process it and send the results directly to the RIFFA channel through an 

AXI-stream interface. In this scenario we eliminate 60% of the DDR-Accelerator data 

Table 2. Area results for the various configurations in terms of resource utilization 

for the XC7VX485T FPGA 

Benchmark LUT FF BRAM DSP48 

BLUR 

bram_naive_1_chnl 15% 10% 5% 11% 

bram_naive_2_chnl 28% 20% 10% 23% 

ddr_naive_1_chnl 20% 15% 6% 5% 

ddr_overlapped_1_chnl 20% 15% 6% 5% 

ddr_streaming_1_chnl 13% 9% 4% 3% 

ddr_streaming_2_chnl 21% 14% 6% 6% 

Monte-Carlo (MC) 

MC_1_walk_1_point_1_chnl 8% 5% 2% 5% 

MC_1_walk_1_point_2_chnl 13% 9% 3% 9% 

MC_all_walks_1_point_1_chnl 9% 7% 2% 5% 

MC_all_walks_1_point_2_chnl 16% 12% 3% 9% 



movements. This is possible because of the streaming nature of the blur kernels. This 

scenario achieves the best performance compared to the CPU implementation. 

Moreover, this scenario consumes less area (see Table 2) than the DDR naive and 

overlapped implementations, which allows allocating more replicas of the accelerators 

to exploit parallelism and improve performance as the case in 

ddr_streaming_2_chnl. 

Monte-Carlo simulation. MC is a compute intensive kernel with minimal 

memory accesses. Hence the different implementation scenarios are made of different 

accelerator configurations and by instantiating multiple instances of the accelerator. In 

the baseline scenario, the accelerator is configured to perform a single walk of a single 

point per invocation, and a single accelerator is allocated 

(MC_1_walk_1_point_1_chnl). This scenario performs much worse than the CPU 

implementation. Double precision operations have larger latency on FPGAs than a 

CPU. Also, Vivado HLS libraries of trigonometric operators (sin, cos) are not pipelined 

and less efficient than their CPU counterparts. The strength of the FPGA is to perform 

more computations in parallel. Unfortunately, the MC kernel computations of a single 

walk are sequential and cannot be parallelized. As such, the FPGA baseline 

implementation performs badly. To improve performance we need to exploit coarser-

grain parallelism across multiple points and walks. The second scenario allocates two 

accelerator instances to parallelize the computations of walks for a single point 

(MC_1_walk_1_point_2_chnl). It reduces the execution time to half, but still worse 

than the CPU. We need to allocate around 40 accelerator replicas to reach the CPU 

performance.  

Another aspect to improve on is to minimize the accelerator invocation overhead 

by coarsening the computations granularity per a single accelerator instance. This 

allows for pipelining computations of multiple walks, which will have a strong impact 

on performance. The third scenario minimizes accelerator invocation overhead by 

configuring the accelerator to perform all the walks of a single point per invocation 

(MC_all_walks_1_point_1_chnl). The fourth scenario allocates five accelerators 

to parallelize computations (MC_all_walks_1_point_5_chnl) across multiple 

points. The last scenario saturates the FPGA resources and almost achieves near CPU 

performance. 

4. CONCLUSION 

Reaching target performance does not have a trivial solution. Customizing the 

accelerator configuration while using a fixed system architecture is not enough to 

compete with state-of-the-art CPUs. It is essential to customize the system architecture 

to reach this goal, especially in applications where data movement overhead dominates 

overall performance. In this effort we studied few directions in system-level 

architectural exploration to orchestrate an approach for customizing system-level 

components, such as number and type of bus interfaces, memory hierarchies, and 

number of accelerators. We considered different data transfer protocols as a way to 

minimize data movement overhead. We intend to study other types of applications to 

extract more efficient ways of system customization as a preliminary for building an 

automatable methodology for custom system generation. 
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