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Objective

Long Term
I Investigate the prospects of combining the effectiveness, the versatility

and the flexibility of Monte Carlo methods with the the rigorousness and
the robustness of the Finite Element (or Finite Difference, or spectral)
methods into truly added value numerical PDE solvers.

I Identify the theoretical and practical obstacles, elucidate the
characteristics and idiosyncrasies of the proposed methods and investigate
software development and engineering emerging issues

I Convince researchers and practitioners that such hybrid methods can be
effectively used at large everyday scale.

Short Term
I Design a generic computational framework and develop an associated

effective prototype hybrid solver for multi-domain linear elliptic PDEs in 2
and 3 dimensions.

This is a preliminary study of an on-going effort on
multi-domain, multi-physics simulation systems.

Hybrid PDE Method

The user specifies the interfaces of the subdomain(s) is interested in.

Stochastic prepossessing Monte Carlo-based walks on spheres provide
approximations of the solution at selected points on the interfaces to
decouple the original PDE problem into a set of independent PDE
sub-problems.

Interpolation smoothing Interpolation procedures use the computed Monte
Carlo approximations at selected points on the interface to provide accurate
enough boundary conditions to local PDE sub-problems.

Deterministic solving Selected finite element solvers compute independently the
local solution to each (or selected) resulting sub-problems.

Elements of the above method can be found at [1, 3]

The Generic Algorithm

Data: i1, i2, . . . , iN: the ids of the subdomains in which we wish to compute
the solution.

Result: ũµ, µ = i1, . . . , iN: computer approximations of the restrictions of
the exact solution u in the subdomains Dµ, µ = i1, . . . , iN.

// PHASE I: Estimate solution on the interfaces

while Iµ,ν ⊂ ∪N
j=1∂Dij do

Select control points xi ∈ Iµ,ν, i = 1, 2, . . . ,Mµ,ν;
Estimate the solution u at control points xi using a Monte Carlo method;
Calculate the interpolant uI

µ,ν of uµ, ν using the control points xi ;

end

// PHASE II: Estimate solution in the subdomains

for j = 1, 2, . . . ,N do
Solve the PDE problem:;
Lijuij(x) = fij(x) x ∈ Dij ;
Bijuij(x) = gij(x) x ∈ ∂Dij ∩ ∂D ;
Lijuij(x) = hij(x) x ∈ Dij ; // construct hij(x) from uI

µ,νs

end

Our Specific Implementation

I PHASE I: Estimate solution on the interfaces
. Compute estimations of the solutions at selected points

I Our C++ implementation of a walk-on-spheres method [2]
I Beyond proof of concept. Focus on efficiency and effectiveness.
I Can be reused as a detached module

. Use computed values to obtain the interpolant of the solution on the
interface lines
I 2D problems: Burkardt’s C++ splines library
I 3D problems: SINTEF’s C++ Multilevel B-splines library

I PHASE II: Estimate solution in the subdomains matches
. deal.II library

Implementation Details

I Modular, extensible, full multi-threaded C++ code with simple usage
interface and API

I The first step of the MC method is the longest and quasi-randomness is
taking advantage of its ”uniformity”. Easily cuts the high frequency terms
of the error.

I Additional attention is needed to avoid the correlation of the quasi-random
sequence of and technical issues effort is devoted

I Further quasi-randomness is not necessary and has not be utilized.

Configuration (input) file

I General Parameters

3 Number of dimensions (2 or 3)
4 Maximum number of threads

I Geometry Parameters

1 Dimension X length . . .
u Uniform/non-uniform subdoms
2 Subdomains along X . . .

I PDE solver’s parameters

6 Grid refinement level . . .

I Monte Carlo Parameters

100 Number of walks
10−6 Boundary tolerance

I Interpolation Parameters

2 Interpolation nodes on the
yz-interface . . .

u Levels in the hierarchical
construction of B-splines

Preliminary Results

I 2D Laplace, 4 uniform subdomains, error
reduction in top-right

cycle cells dofs L2 norm L∞norm
0 8 125 6.405e+00 2.102e+01
1 64 729 1.083e+00 4.249e+00
2 512 4913 1.366e-01 6.255e-01
3 4096 35937 1.848e-02 1.380e-01

I True solution

Synopsis & Prospects

I We have
. Designed a software framework and implemented an associated prototype

for hybrid PDE solvers.
. Identified the importance of quasi-randomness for the first step (only).
. Realized the necessity of properly balancing the accuracy of the random

walks, the interpolant, the FE solver and the floating point arithmetic.
. Convinced of the effectiveness of the meta-computing paradigm at the

level of reusing state-of-the-art high performance numerical solvers (and
beyond).

. Confirmed the natural multi-threaded implementation and the associated
natural mapping on modern many-core systems.

I We plan to
. Continue experimentation and theoretically analyze model problems
. Develop hybrid methods for the two engineering problems considered.
. Extent implementation for general linear Elliptic PDEs on

multi-rectangular domains
. . . .
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