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Gliomas are among the most aggressive forms of brain tumors. Over the last years 
mathematical models have been well developed to study gliomas growth. We consider a 
simple and well established mathematical model focused on proliferation and diffusion. 
Due to the heterogeneity of the brain tissue (white and grey matter) the diffusion 
coefficient is considered to be discontinuous. Fokas transform approach for the solution 
of linear PDE problems, apart from the fact that it avoids solving intermediate ODE 
problems, yields novel integral representations of the solution in the complex plane that 
decay exponentially fast and converge uniformly at the boundaries. To take advantage of 
these properties for the solution of the model problem at hand, we have successfully 
implemented Fokas transform method in the multi-domain environment induced by the 
interface discontinuities of our problem’s domain. The fact that the integral representation 
of the solution at any time–space point of our problem’s domain is independent on 
any other points of the domain, except of course on initial data, coupled with a simple 
composite trapezoidal rule, implemented on appropriately chosen integration contours, 
yields a fast and efficient analytical–numerical technique capable of producing directly 
high-order approximations of the solution at any point of the domain requiring no prior 
knowledge of the solution at any other time instances or space information.

© 2014 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Gliomas, the most common primary brain tumors, are well known to be highly invasive. Recent mathematical models 
[7,1,2,15,18] formulated the problem of glioma growth where the basic parameters of the models were estimated by CT 
scan data. These models focus on two parameters: the spread D of glioma cells to tissues and the net proliferation rate ρ of 
glioma cells. Swanson [11,13,14,12] developed a model based on the differential motility of gliomas cells in white and grey 
matter suggesting that the diffusion coefficient in white matter is greater than in grey matter. Key role in the mathematical 
formulation of the problem plays the differential equation:

∂ c̄

∂ t̄
= ∇ · (D̄(x̄)∇ c̄

) + ρ c̄, (1)
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Fig. 1. Diffusion coefficient.

where c̄(x̄, ̄t) denotes the tumor cell density at location x̄ and time t̄ , ρ denotes the net proliferation rate, and D̄(x̄) is the 
diffusion coefficient representing the active motility of malignant cells satisfying

D̄(x̄) =
{

D g, x̄ in grey matter
D w , x̄ in white matter

, (2)

with D g and D w scalars and D w > D g . The model formulation is completed by zero flux boundary conditions which impose 
no migration of cells beyond the brain boundaries and an initial condition c̄(x̄, 0) = f̄ (x̄), where f̄ (x̄) is the initial spatial 
distribution of malignant cells.

In this work, we consider the dimensionless form of the previous model in one dimension and on a finite domain (grey 
matter – white matter – grey matter). By making use [11] the dimensionless variables:

x =
√

ρ

D w
x̄, (3)

t = ρt̄, (4)

c(x, t) = c̄

(√
ρ

D w
x̄ρt̄

)
D w

ρN0
, (5)

f (x) = f̄

(√
ρ

D w
x̄

)
(6)

with N0 = ∫
f (x)dx to denote the initial number of tumor cells in the brain at t = 0, we arrive at the dimensionless system:⎧⎨⎩

ct = (Dcx)x + c, x ∈ [a,b], t ≥ 0

cx(a, t) = 0 and cx(b, t) = 0

c(x,0) = f (x)

(7)

and by substituting

c(x, t) = et u(x, t) (8)

we obtain⎧⎨⎩
ut = (Dux)x, x ∈ [a,b], t ≥ 0

ux(a, t) = 0 and ux(b, t) = 0

u(x,0) = f (x)

. (9)

Note that the initial source of tumor cells f (x) is defined through out of this paper to be:

f (x) := δ(x − ξ), ξ ∈ (a,b) (10)

where δ(x) denotes the Dirac’s delta function. Furthermore, the dimensionless parameter D is considered to be constant 
defined by:

D(x) =
⎧⎨⎩

γ , a ≤ x < w1

1, w1 ≤ x < w2

γ , w2 ≤ x ≤ b

, (11)

where γ := D g/D w < 1 is the dimensionless diffusion coefficient in grey matter and the dimensionless diffusion coefficient 
in white matter is to considered to be unity (see Fig. 1). Estimates of the values of the physiological parameters for a high 
grade tumor are included in Table 1 (cf. [11] and the references therein).
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Table 1
Parameter estimates for a high-grade human glioma.

Parameter Symbol Range of values Units

Diffusion coefficient in grey matter D g 0.0013 cm2/day
Diffusion coefficient in white matter D w > 4D g = 0.0052 cm2/day
Net growth rate ρ 0.012 day−1

Fig. 2. Model problem.

Observe now that the discontinuous diffusion coefficient D(x) directly implies discontinuity of ux , hence continuity of 
Dux , across each interface. In fact, as the linear parabolic nature of the initial-boundary value problem (9) implies continuity 
u across each interface, that is

[u] := u+ − u− = 0, at x = wk, k = 1,2, (12)

where

u+ := lim
x→w+

k

u(x) and u− := lim
x→w−

k

u(x),

integration of the equation in (9) over the discontinuity interfaces yields

[Dux] := D+u+
x − D−u−

x = 0, at x = wk, k = 1,2. (13)

By using the above continuity constrains (12)–(13) we can alternatively describe the model problem in (9) by⎧⎪⎨⎪⎩
ut = Duxx, x ∈ R�, � = 1,2,3, t ≥ 0
ux(a, t) = 0 and ux(b, t) = 0
[u] = 0 and [Dux] = 0 at x = wk, k = 1,2
u(x,0) = f (x)

(14)

where R� denote the region

R1 := [a, w1], R2 := [w1, w2], R3 := [w2,b]. (15)

The above definition of the model problem is graphically depicted in Fig. 2.
Triggered by the application’s significance as well as the presence of interface discontinuities, we initiated an inves-

tigation pertaining to the efficient implementation of the Fokas transform method in the above described multi-domain 
environment. Fokas method [4,5] combines complex analysis with numerics to construct a novel technique for numerically 
evaluating the integral representation of the solution of the partial differential equation. The recent works of Flyer and 
Fokas [3] (see also [6]) and Papatheodorou and Kandili [9] dealt with the problem of implementing Fokas method for the 
heat equation with Dirichlet boundary conditions. It was shown that, as the method allows the solution to be computed 
at any point of the time–space domain without requiring any knowledge of the solution at any other point of the domain, 
it has a significant advantage over the classical numerical techniques especially when remote time calculations are needed. 
The efficient implementation of Fokas method in the present work preserves this advantage for the multi-domain case as 
well.

The work in this paper is organized as follows: In Section 2 we appropriately extend Fokas method for the multi-domain 
problem at hand and present the integral form of the solution in each domain. For the efficient numerical evaluation of 
the integrals involved we use, in Section 3, the integrand analyticity properties to properly deform the integration contours 
while, in Section 4, we reveal integrand inherent symmetry properties.
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2. Fokas integral representation of the solution

Let u�(x, t), � = 1, 2, 3 denote the solution of the model problem (14) in the R� , � = 1, 2, 3 region respectively. Appar-
ently then, the constrains in (12)–(13) are equivalently written as:

u1(w1, t) = u2(w1, t) (16)

γ u1x(w1, t) = u2x(w1, t) (17)

u2(w2, t) = u3(w2, t) (18)

u2x(w2, t) = γ u3x(w2, t) (19)

Fokas transform method uses the divergent form of the differential equation to produce the so called Global Relation which is 
used in the sequel to derive the integral form of the solution. A detailed description of the steps involved in the derivation 
of the solution’s integral form may be found in [5]. Here, we will briefly describe the procedure, aiming in emphasizing the 
unknown quantities involved due to the usage of compatibility, rather than boundary, conditions at the interior interface 
points. In this direction, observe that u1(x, t) satisfies equation

u1t = γ u1xx, x ∈ R1 (20)

or, equivalently, in divergence form, equation[
e−ikx+γ k2t u1

]
t − [

e−ikx+γ k2tγ (u1x + iκu1)
]

x = 0, k ∈C. (21)

Integrating over space and time, and applying Green’s theorem one obtains that

w1∫
a

e−ikx+γ k2t u1(x, t)dx −
w1∫

a

e−ikxu1(x,0)dx

−
t∫

0

γ e−ikw1+γ k2τ u1x(w1, τ )dτ −
t∫

0

ikγ e−ikw1+γ k2τ u1(w1, τ )dτ

+
t∫

0

γ e−ika+γ k2τ u1x(a, τ )dτ +
t∫

0

ikγ e−ika+γ k2τ u1(a, τ )dτ = 0 (22)

to observe that, besides u1(x, t), quantities u1(w1, τ ) and u1x(w1, τ ) are also unknown. Let us now denote the direct Fourier 
transform of u�(x, t) by

û�(k, t) =
r�∫

l�

e−ikxu�(x, t)dx, k ∈ C, � = 1,2,3 (23)

and the inverse Fourier transform by

u�(x, t) = 1

2π

∞∫
−∞

eikxû�(k, t)dk, � = 1,2,3 (24)

where l� and r� denote the left and right endpoints of the R� region. If we also define

ũ�

(
x, γ k2) :=

t∫
0

eγ k2τ u�(x, τ )dτ , � = 1,3 (25)

ũ2
(
x,k2) :=

t∫
0

ek2τ u2(x, τ )dτ (26)

and
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ũ�x
(
x, γ k2) :=

t∫
0

eγ k2τ u�x(x, τ )dτ , � = 1,3 (27)

ũ2x
(
x,k2) :=

t∫
0

ek2τ u2x(x, τ )dτ (28)

then Eq. (22) becomes the Global Relation of region R1:

eγ k2t û1(k, t) = f̂1(k) + γ e−ikw1
[̃
u1x

(
w1, γ k2) + ik̃u1

(
w1, γ k2)]

− γ e−ika [̃u1x
(
a, γ k2) + ik̃u1

(
a, γ k2)], k ∈C (29)

where:

f̂�(r) =
r�∫

l�

e−irx f�(x)dx (30)

with f� denoting the initial condition u(x, 0) in R� , � = 1, 2, 3. Working similarly, the Global relations for regions R2 and 
R3 are given respectively by

ek2t û2(k, t) = f̂2(k) + e−ikw2
[̃
u2x

(
w2,k2) + ik̃u2

(
w2,k2)]

− e−ikw1
[̃
u2x

(
w1,k2) + ik̃u2

(
w1,k2)], k ∈C (31)

and

eγ k2t û3(k, t) = f̂3(k) + γ e−ikb [̃u3x
(
b, γ k2) + ik̃u3

(
b, γ k2)]

− γ e−ikw2
[̃
u3x

(
w2, γ k2) + ik̃u3

(
w2, γ k2)], k ∈ C. (32)

Moreover, taking into consideration constrains (16)–(19), the boundary conditions ux(a, t) = 0 and ux(b, t) = 0, and if we let 
λ2 = γ k2 and c = γ − 1

2 , and relabel in the sequel λ to k, the above relations take the form:

ek2t û1(ck, t) = f̂1(ck) + γ e−ickw1
[̃
u1x

(
w1,k2) + ick̃u1

(
w1,k2)]

− γ e−ickaick̃u1
(
a,k2), k ∈C (33)

ek2t û2(k, t) = f̂2(k) + e−ikw2
[̃
u2x

(
w2,k2) + ik̃u2

(
w2,k2)]

− e−ikw1
[
γ ũ1x

(
w1,k2) + ik̃u1

(
w1,k2)], k ∈ C (34)

ek2t û3(ck, t) = f̂3(ck) + γ e−ickbick̃u3
(
b,k2)

− γ e−ickw2

[
1

γ
ũ2x

(
w2,k2) + ick̃u2

(
w2,k2)], k ∈C. (35)

Inverting the Fourier transforms in Eqs. (33)–(35) we obtain the integral representation of the solutions u�(x, t), � = 1, 2, 3
respectively:

u1(x, t) = c

2π

∞∫
−∞

eickxe−k2t f̂1(ck)dk (36a)

− 1

2cπ

∞∫
−∞

eick(x−w1)e−k2t [̃u1x
(

w1,k2) + ick̃u1
(

w1,k2)]dk (36b)

− 1

2π

∞∫
ikeick(x−a)e−k2t ũ1

(
a,k2)dk (36c)
−∞
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Fig. 3. The contours ∂D+ and ∂D− .

u2(x, t) = 1

2π

∞∫
−∞

eikx−k2t f̂2(k)dk (37a)

− 1

2π

∞∫
−∞

eik(x−w2)e−k2t[ũ2x
(

w2,k2) + ikũ2
(

w2,k2)]dk (37b)

− 1

2π

∞∫
−∞

eik(x−w1)e−k2t[γ ũ1x
(

w1,k2) + ikũ1
(

w1,k2)]dk (37c)

u3(x, t) = c

2π

∞∫
−∞

eickx−k2t f̂3(ck)dk (38a)

− 1

2π

∞∫
−∞

eick(x−b)e−k2t ikũ3
(
b,k2)dk (38b)

− 1

2cπ

∞∫
−∞

eick(x−w2)e−k2t
[

1

γ
ũ2x

(
w2,k2) + ickũ2

(
w2,k2)]dk. (38c)

Furthermore, the analyticity of the functions involved in the integral representation of the solutions u�(x, t) above, allows 
the replacement of the real axis (−∞, ∞) by other contours of integration in the complex plane. Indeed referring, for 
example, to the integral representation of u1(x, t) in (36), it can be easily observed that:

• the term eick(x−w1) is bounded and analytic for Im(k) ≤ 0
• the term eick(x−a) is bounded and analytic for Im(k) ≥ 0
• the term e−k2t is bounded and analytic for Re(k2) ≥ 0.

Then, upon definition of the domains D , D+ and D− (see also Fig. 3) as

D = {
k ∈C : Re k2 < 0

} =
{

k ∈C : arg k ∈
{(

π
,

3π
)

∪
(

5π
,

7π
)}}

(39)

4 4 4 4
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D+ =
{

k : arg k ∈
(

π

4
,

3π

4

)}
= D ∩C

+ (40)

D− =
{

k : arg k ∈
(

5π

4
,

7π

4

)}
= D ∩C

− (41)

we may equivalently express (see also [8]) the integral representations of u�(x, t) as

u1(x, t) = c

2π

∞∫
−∞

eickxe−k2t f̂1(ck)dk (42a)

− 1

2cπ

∫
∂ D−

eick(x−w1)e−k2t [̃u1x
(

w1,k2) + ick̃u1
(

w1,k2)]dk (42b)

− 1

2π

∫
∂ D+

ikeick(x−a)e−k2t ũ1
(
a,k2)dk (42c)

u2(x, t) = 1

2π

∞∫
−∞

eikx−k2t f̂2(k)dk (43a)

− 1

2π

∫
∂ D−

eik(x−w2)e−k2t[ũ2x
(

w2,k2) + ikũ2
(

w2,k2)]dk (43b)

− 1

2π

∫
∂ D+

eik(x−w1)e−k2t[γ ũ1x
(

w1,k2) + ikũ1
(

w1,k2)]dk (43c)

u3(x, t) = c

2π

∞∫
−∞

eickx−k2t f̂3(ck)dk (44a)

− 1

2π

∫
∂ D−

eick(x−b)e−k2t ikũ3
(
b,k2)dk (44b)

− 1

2cπ

∫
∂ D+

eick(x−w2)e−k2t
[

1

γ
ũ2x

(
w2,k2) + ickũ2

(
w2,k2)]dk. (44c)

To determine the quantities ũ1(a, k2), ũ1(w1, k2), ũ1x(w1, k2), ũ2(w2, k2), ũ2x(w2, k2), ũ3(b, k2) we replace k by −k in 
Eqs. (33)–(35) to obtain:

ek2t û1(−ck, t) = f̂1(−ck) + γ eickw1
[̃
u1x

(
w1,k2) − ick̃u1

(
w1,k2)]

+ γ eickaick̃u1
(
a,k2), k ∈C (45)

ek2t û2(−k, t) = f̂2(−k) + eikw2
[̃
u2x

(
w2,k2) − ik̃u2

(
w2,k2)]

− eikw1
[
γ ũ1x

(
w1,k2) − ik̃u1

(
w1,k2)], k ∈C (46)

ek2t û3(−ck, t) = f̂3(−ck) − γ eickbick̃u3
(
b,k2)

− γ eickw2

[
1

γ
ũ2x

(
w2,k2) − ick̃u2

(
w2,k2)], k ∈C. (47)

Eqs. (33), (45), (34), (46), (35), (47) define the linear system

G ũ = f (48)

where
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G =

⎡⎢⎢⎢⎢⎢⎣
ickγ e−icka −γ icke−ickw1 −γ e−ickw1

−ickγ eicka γ ickeickw1 −γ eickw1

ike−ikw1 γ e−ikw1 −ike−ikw2 −e−ikw2

−ikeikw1 eikw1γ ikeikw2 −eikw2

e−ickw2 ickγ e−ickw2 −ickγ e−ickb

−eickw2 ickγ eickw2 ickγ eickb

⎤⎥⎥⎥⎥⎥⎦ (49)

ũ =

⎡⎢⎢⎢⎢⎢⎣
ũ1(a,k2)

ũ1(w1,k2)

ũ1x(w1,k2)

ũ2(w2,k2)

ũ2x(w2,k2)

ũ3(b,k2)

⎤⎥⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂1(ck)

f̂1(−ck)

f̂2(k)

f̂2(−k)

f̂3(ck)

f̂3(−ck)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (50)

Apparently, the solution of the above linear system determines the needed unknown quantities.

Remark 1. We point out that the Fourier transform terms ̂u�(±ck, t) have been omitted from the system (48) as the contri-
bution of û�(±ck,t)

det(G)
terms vanish (cf. [10]).

Remark 2. The presence of exponential terms, depending on k and at the same time on −k, in the system (48) above 
imposes the usage of appropriate normalization to avoid overflows. Division of each equation by its greatest in modulus 
coefficient suffices to resolve this problem.

3. Contours and properties of integration

Aiming to the development of efficient numerical integration rules, in this section we discuss appropriate contours of 
integration as well as we underline inherent properties of the integrals involved in relations (42)–(44).

3.1. Analytic expressions for integrals of Gaussian functions

Recalling the definitions (10) and (30) it becomes apparent that

f�(x) =
{

δ(x − ξ), ξ ∈ R� \ {l�, r�}
0, otherwise

, � = 1,2,3 (51)

hence

f̂�(λk) =
{

e−iλkξ , ξ ∈ R� \ {l�, r�}
0, otherwise

(52)

and therefore the first integral term in (42)–(44)

u�a(x, t) := λ

2π

∞∫
−∞

eiλkxe−k2t f̂�(λk)dk

=
{

λ

2
√

tπ
e− λ2(ξ−x)2

4t , ξ ∈ R� \ {l�, r�}
0, otherwise

(53)

with λ = c when � = 1, 3 and λ = 1 when � = 2.
Apparently, relation (59) is also being used to evaluate the right hand side vector f , defined in (57), of the complex 

linear system in (55).

3.2. Integration contours

It is known (cf. [16,17]) that one approach to the numerical quadrature of integrals containing ez is to apply the trapezoid 
rule on a suitable chosen contour. Hyperbolas, one class of such contours, are simple curves having asymptotic directions 
and are therefore a natural choice of integration path. To define the hyperbolas (see also [3,9]) we map the points θ on the 
real line to the points ±k(θ) of the complex plane by using the analytic function:

kθ ≡ k(θ) := i sin(β − iθ). (54)

Evidently the k(θ) and −k(θ) curves replace the integration paths ∂ D+ and ∂ D− respectively (see Fig. 4).
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Fig. 4. The hyperbolas at β = π/6.

Furthermore, upon their substitution in (42)–(44), the integral representations of the solutions u�(x, t) take the form

u�(x, t) = u�a(x, t) + u�b(x, t) + u�c(x, t), � = 1,2,3 (55)

where u�a is as defined in (53), and

u1b(x, t) = + 1

2cπ

∞∫
−∞

eickθ (w1−x)e−k2
θ t [̃u1x

(
w1,k2

θ

) − ickθ ũ1
(

w1,k2
θ

)]
k′
θdθ

u2b(x, t) = + 1

2π

∞∫
−∞

eikθ (w2−x)e−k2
θ t [̃u2x

(
w2,k2

θ

) − ikθ ũ2
(

w2,k2
θ

)]
k′
θdθ

u3b(x, t) = − 1

2π

∞∫
−∞

eickθ (b−x)e−k2
θ t ikθ ũ3

(
b,k2

θ

)
k′
θdθ

u1c(x, t) = − 1

2π

∞∫
−∞

ikθ eickθ (x−a)e−k2
θ t ũ1

(
a,k2

θ

)
k′
θdθ

u2c(x, t) = − 1

2π

∞∫
−∞

eikθ (x−w1)e−k2
θ t[γ ũ1x

(
w1,k2

θ

) + ikθ ũ1
(

w1,k2
θ

)]
k′
θdθ

u3c(x, t) = − 1

2cπ

∞∫
−∞

eickθ (x−w2)e−k2
θ t

[
1

γ
ũ2x

(
w2,k2

θ

) + ickθ ũ2
(

w2,k2
θ

)]
k′
θdθ (56)

with k′
θ to denotes the derivative of k(θ), namely

k′
θ = cos(β − iθ). (57)

3.3. Integrand algebraic properties

For the efficient evaluation of all the above integrals one has to take into consideration the following basic integrand 
algebraic properties:

• The real parts of all integrands are even functions of θ .
• The imaginary parts of all integrands are odd functions of θ .
• The integrands are decaying functions of θ .

The proof of the first two properties follows after a few algebraic manipulations (cf. [8]) while the third one is a direct 
consequence of the selected integration paths. Said properties are further demonstrated through Figs. 5, 6 and 7 for the 
integrals u1b and u1c . Application of the above properties directly implies that
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Fig. 5. Real parts of the integrands in (a) u1b and (b) u1c integrals for x = −π and t = 0.1 (green), t = 1 (blue), t = 10 (red). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Imaginary parts of the integrands in (a) u1b and (b) u1c integrals for x = −π and t = 0.1 (green), t = 1 (blue), t = 10 (red). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

∞∫
−∞

U (θ)dθ = 2

∞∫
0

Re
(
U (θ)

)
dθ ≈ 2

R∫
0

Re
(
U (θ)

)
dθ,

where U (θ) denotes any one of the integrands involved in (56) and R is a relatively small real number. For a good estimate 
of R one may ask the dominant exponential term e−k2

θ t , common in all integrals, to satisfy∣∣e−k2
θ t

∣∣ ≤ 10−M for all θ ≥ R ≡ R(t; M)

for sufficiently large M , hence

R = 1

2
ln

4t + 8M ln 10

t
. (58)
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Fig. 7. Absolute value of the integrand real part (logarithmic scale) of (a) u1b and (b) u1c integrals for x = −π and t = 0.1 (green), t = 1 (blue), t = 10 (red). 
The corresponding values of R from (58) are given respectively by R = 4.31, 3.16, 2.04 for M = 30. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

4. Numerical evaluation

Recalling relations (7)–(9) and (14), which completely define the model problem at hand, and referring to Fig. 2, the 
model data used in this section are given by:

a = −5, w1 = −1, w2 = 1, b = 5,

u(x,0) = δ(x + 3) and u(x,0) = δ(x + 4) + δ(x − 2). (59)

The dimensionless diffusion coefficient in grey matter γ is taking the value γ = 0.2, namely D w = 5D g , characterizing 
high grade gliomas (see Table 1). For comparison purposes, we have also included the same experiments for γ = 0.5 (see 
Fig. 8).

In all numerical simulations the time t evolves up to tmax = 4, which corresponds to approximately 1 year of real time 
(11 months 3 days and 8 hours, to be exact), suggested by medical data for high grade gliomas (see Table 1). In Table 2, 
we show the relation between dimensionless are real time for certain characteristic values. Furthermore the hyperbolas, 
adopted as numerical contours, use β = π/6 as in [9], while no significant difference is noticed if we choose other qualified 
(less than π/4) values of β , say β = π/8 used in [3].

For the quadrature of the integrals in (56) the hyperbolic contours are combined with a simple 64-point trapezoid rule 
(cf. [16,17]) to achieve a fast decaying rate of convergence.

Implementing the above described procedure, the time evolution of the tumor cell density

c(x, t) = et u(x, t)

can be numerically observed, as we have done in Fig. 8 for 0.2 ≤ t ≤ 4 with time step dt = 0.2. In Fig. 8, different line curves 
represent the tumor cell density at different time levels. The diffusivity factor γ has been set to γ = 0.5 in Figs. 8a and 8c, 
while in Figs. 8b and 8d has been set to γ = 0.2. The initial tumor sell density has been considered to be u(x, 0) = δ(x + 3)

in Figs. 8a and 8b, and u(x, 0) = δ(x + 4) + δ(x − 2) in Figs. 8c and 8d.
The computational time needed to compute the numerical approximation of u(x, t) at a certain point (x, t) = (x̄, ̄t), is 

essentially the computational time needed to construct and solve the linear system in (48) for each one of the quadrature 
points. Using Matlab, a 64-point trapezoid rule and taking into account the integral symmetries, the approximation of u(x̄, ̄t)
on a nowadays PC takes a few milliseconds for the solution of the linear systems involved, and tenths of a millisecond for 
the completion of the numerical integration. It is worthwhile to point out that the linear system in (48) does not depend 
on the variables x and t , depending only on the variable k = k(θ). Therefore, for fixed t = t̄ , hence same R = R(t̄) and thus 
same quadrature points for all integrals, the computational time needed to compute the numerical approximation of u(x, t)
at M points (x̄ j, ̄t), j = 1, . . . , M , is almost equal to the time needed for the numerical approximation of u(x, t) at one point 
since we can construct and solve the linear systems involved once and use in the sequel their solution for all integrals at 
all points.
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Fig. 8. Time evolution of the tumor cell density c(x, t) for t = 0.2 : 0.2 : 4.

Table 2
Characteristic values of dimensionless are real time for high 
grade tumors.

Dimensionless time Real time

t = 0.01 20 hours
t = 0.1 ≈ 8 days
t = 1 ≈ 3 months
t = 4 ≈ 1 year
t = 10 ≈ 2 years

The convergence rate of the numerical integration procedure is basically affected by the choice of the parameter R , which 
determines the integration limits, and the number of the quadrature points N . To explore the dependence on the parameter 
R we make use of the relative error E R , defined by:

E R := ‖U Ri − U Ri+1‖∞
‖U Ri+1‖∞

, (60)

where U Ri denotes the vector of numerical approximations û(x̄ j, ̄t; Ri), j = 1, . . . , M to the solution u(x, t) produced by 
using [−Ri, Ri] as integration limits in all integrals. Referring to the model problem described in Fig. 8a and keeping N
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Fig. 9. The relative error E R for different values of time (t).

fixed at a sufficiently large (N ≥ 64) value, the relative error E R is depicted in Fig. 9. Observe that there is an optimal value 
Ropt such that the relative error E R remains practically the same for all R ≥ Ropt . The value R = Rs , obtained by using 
relation (58) and shown schematically by a “star” in Fig. 9, is clearly an effective approximation to Ropt .

To explore now the dependence on the number of the quadrature points N , we define the relative error E N as:

E N := ‖U Ni − U Ni+1‖∞
‖U Ni+1‖∞

(61)

where U Ni denotes the vector of numerical approximations û(x̄ j, ̄t; Ni), j = 1, . . . , M to the solution u(x, t) produced by 
using Ni quadrature points with the trapezoid rule used for the numerical evaluation of all integrals. In Fig. 10 we observe 
the rapidly decaying convergence rate when R = Rs , the value obtained by using relation (58). Similar behavior is observed 
for all values of R in the neighborhood of Ropt . In these cases the error drops exponentially reaching 10−14 for N ≥ 64. 
To the contrary, for R < Ropt the convergence is slow. We remark that in [3] an adaptive trapezoid rule was adopted and 
implemented through known computational environments to overcome the need of increased quadrature points around 
zero (0, t). The use, however, of adaptive procedures in our implementation is not a central issue as the computational cost 
in multi-domain environments is basically attributed to the solution of the involved linear system.

5. Conclusions

In this work we implemented effectively the Fokas transform method in a multi-region, multi-physics problem simulating 
brain tumor growth in heterogeneous environments (white–grey matter).

To overcome the singularities at interface points, Fokas integral representations of the solution in different regions are 
also coupled by a linear system, for the unknown quantities on the interface points, derived by making use of the global 
relationships evaluated not only at k but at −k as well.

For the numerical evaluation of the integrals involved, taking into consideration the fast decaying properties of the 
integrands, we adopted hyperbolic contours and reduced the limits of integration from (−∞, ∞) to (−Ropt, Ropt), where 
Ropt is estimated in (58), to achieve exponentially decaying rate of convergence for a simple trapezoid quadrature rule. In 
this way, the computational cost of the whole numerical procedure is mainly attributed to the solution of the involved 
linear system.
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Fig. 10. The relative error EN for t = 0.1,1 and different values of R .

References

[1] P. Burgess, P. Kulesa, J. Murray, E. Alvord Jr., The interaction of growth rates and diffusion coefficients in a three-dimensional mathematical model of 
gliomas, J. Neuropathol. Exp. Neurol. 56 (1997) 704–713.

[2] G. Cruywagen, D. Woodward, P. Tracqui, G. Bartoo, J. Murray, E. Alvord, The modeling of diffusive tumours, J. Biol. Syst. 3 (1995) 937–945.
[3] N. Flyer, A.S. Fokas, A hybrid analytical–numerical method for solving evolution partial differential equations I. The half-line, Proc. R. Soc. A 464 (2008) 

1823–1849.
[4] A.S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 453 (1997) 1411–1443.
[5] A.S. Fokas, A new transform method for evolution partial differential equations, IMA J. Appl. Math. 67 (2002) 559–590.
[6] A.S. Fokas, N. Flyer, S.A. Smitheman, E.A. Spence, A semi-analytical numerical method for solving evolution and elliptic partial differential equations, 

J. Comput. Appl. Math. 227 (2009) 59–74.
[7] J. Murray, Mathematical Biology, 3rd ed., Springer-Verlag, 2002.
[8] M. Papadomanolaki, The collocation method for parabolic differential equations with discontinuous diffusion coefficient: in the direction of brain 

tumour, Ph.D. thesis, Technical University of Crete, 2012.
[9] T.S. Papatheodorou, A.N. Kandili, Novel numerical techniques based on Fokas transforms, for the solution of initial boundary value problems, J. Comput. 

Appl. Math. 227 (2009) 75–82.
[10] D.A. Smith, Well-posed two-point initial-boundary value problems with arbitrary boundary conditions, Math. Proc. Camb. Philos. Soc. 152 (2012) 

473–496.
[11] K. Swanson, Mathematical modeling of the growth and control of tumors, Ph.D. thesis, University of Washington, 1999.
[12] K. Swanson, Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion, J. Neurol. Sci. 216 (2003) 1–10.
[13] K. Swanson, E. Alvord Jr., J. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Prolif. 33 (2000) 317–329.

http://refhub.elsevier.com/S0168-9274(14)00159-7/bib425552s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib425552s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib435255s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib464Cs1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib464Cs1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib466F6Bs1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib466Fs1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib4646s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib4646s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib4D5552s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib4D3A506844s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib4D3A506844s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib504Es1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib504Es1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib534D495448s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib534D495448s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib4B5249s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib53424D41s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib53414Ds1


JID:APNUM AID:2870 /FLA [m3G; v1.140; Prn:15/10/2014; 13:09] P.15 (1-15)

D. Mantzavinos et al. / Applied Numerical Mathematics ••• (••••) •••–••• 15
[14] K. Swanson, E. Alvord Jr., J. Murray, Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current 
therapy, Br. J. Cancer 86 (2002) 14–18.

[15] P. Tracqui, G. Cruywagen, D. Woodward, G.T. Bartoo, J. Murray, E. Alvord, A mathematical model of glioma growth: the effect of chemotherapy on 
spatio-temporal growth, Cell Prolif. 28 (1995) 17–31.

[16] L.N. Trefethen, J.A.C. Weideman, T. Schmelzer, Talbot quadratures and rational approximations, BIT Numer. Math. 46 (2006) 653–670.
[17] J.A.C. Weideman, L.N. Trefethen, Parabolic and hyperbolic contours for computing the Bromwich integral, Math. Comput. 76 (2007) 1341–1356.
[18] D. Woodward, J. Cook, P. Tracqui, G. Cruywagen, J. Murray, E. Alvord Jr., A mathematical model of glioma growth: the effect of extent of surgical 

resection, Cell Prolif. 29 (1996) 269–288.

http://refhub.elsevier.com/S0168-9274(14)00159-7/bib534B4D41s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib534B4D41s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib545241s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib545241s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib545753s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib5754s1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib574F4Fs1
http://refhub.elsevier.com/S0168-9274(14)00159-7/bib574F4Fs1

	Fokas transform method for a brain tumor invasion model with heterogeneous diffusion in 1+1 dimensions
	1 Introduction
	2 Fokas integral representation of the solution
	3 Contours and properties of integration
	3.1 Analytic expressions for integrals of Gaussian functions
	3.2 Integration contours
	3.3 Integrand algebraic properties

	4 Numerical evaluation
	5 Conclusions
	Acknowledgement
	References


