Study and implementation of computational methods for Differential Equations in heterogeneous systems

Asimina Vouronikoy - Eleni Zisiou

Outline

Introduction

- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations
- Results
- Future Plans

Introduction

- ID/2D Poisson differential equations:
 - 1. Discretization of the PDE domain into a grid of evenly spaced nodes
 - 2. Discretization of the restriction of the PDE equation on the grid nodes with one of :
 - Finite Difference (FD) methods
 - Finite Element methods (FEM)
 - Finite Volume (FV) methods
 - 3. Solution of the resulting linear system
 - Iterative (Jacobi, Gauss-Seidel, SOR, Multigrid etc)
 - Direct methods (Gauss, Cholesky, Thomas, FFT etc).

Tridiagonal solvers

• Tridiagonal solvers are tools of high importance in wide range of engineering and scientific applications

Applications include:

- Computer graphics
- Financial applications
- Fluid dynamics
- Modeling of medical problems
- Various solving methods:
 - Thomas algorithm
 - Cyclic reduction method
 - Recursive doubling etc.

Contribution

Extremely intensive computations → need to solve very fast
 PDEs in 2D problems

Contribution

- Algorithms for solving
 - tridiagonal systems arising from 1D PDEs
 - and block tridiagonal systems arising from 2D PDEs
 - CPU implementation
 - GPU implementation
- Model : Poisson differential equation in 1D and 2D

CPUs vs. GPUs

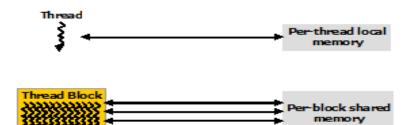
CPUs

- Few cores optimized for serial processing
- Large caches
- Slow context switch
- General purpose computation

GPUs

- Thousands of smaller, more efficient cores designed for parallel performance
- Small caches
- Fast hardware implemented context switch
- Need of intensive and simple operation

CUDA programming model



Grid 0		
	(1, 0) Block (2	
	(1, 1) Block (2,	
Grid 1		Global memory
Block (0, 0)	Block (1, 0)	
Block (0, 1)	Block (1, 1)	
Block (0, 2)	Block (1, 2)	

- Introduction
- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations
- Results
- Future Work

Review of related work

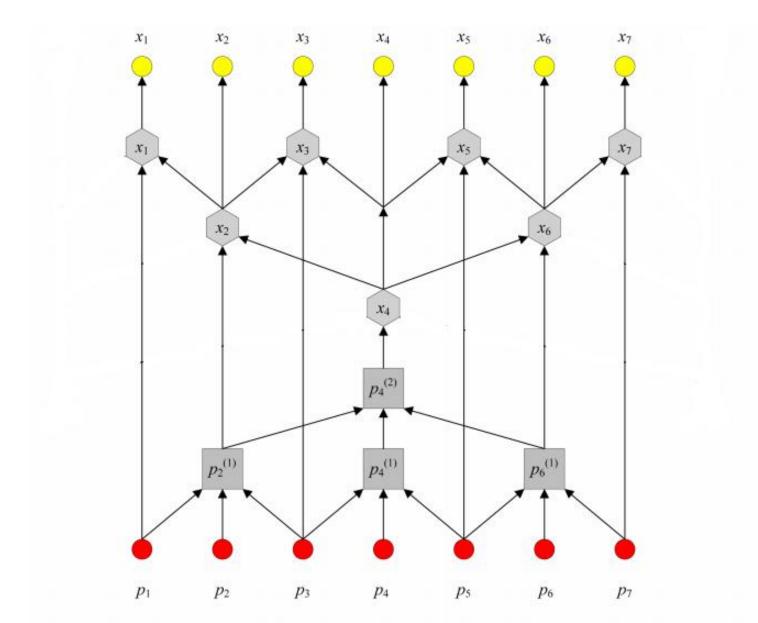
- Most popular discretization methods
 - Finite Difference
 - Finite Element
- Most popular linear solving methods
 - Parallel Cyclic Reduction
 - Conjugate Gradient
 - Jacobi
- Most compared to
 - CUBLAS library
 - CUSPARCE library
 - MKL library

- Introduction
- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations
- Results
- Future Work

Cyclic Reduction Algorithm (1/2)

- 1D problems -----> tridiagonal linear system
- Two step algorithm
 - Forward reduction
 - Combine linearly the equations in order to eliminate the odd numbered unknowns
 - Unknowns are re-ordered
 - Process is continued until one equation with one unknown is left
 - Backward substitution
 - Solve the one equation left and find the unknown x
 - Find all unknowns from the previous steps
- Each phase consists of $log_2(n+1)$ steps, n = system size
- n = 2^p − 1

Cyclic Reduction Algorithm (2/2)



- Introduction
- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations
- Results
- Future Work

Block Cyclic Reduction Algorithm (1/2)

2 D problems ----> block tridiagonal systems
 Solution of A * X = F

 $A = \begin{pmatrix} B & T & & & \\ T & B & T & & \\ & T & B & T & \\ & & T & B & T & \\ & & & & \\ & & & T & B & T \\ & & & & B & T \end{pmatrix}$

where B is tridiagonal matrix and T is a diagonal matrix

Block Cyclic Reduction Algorithm (2/2)

- Extension of Cyclic Reduction to block tridiagonal systems (n blocks of size q)
- After log₂(n + 1) reductions, a 1x1 block system needs to be solved
- Formulation is numerically unstable
- Buneman variant

Buneman algorithm

• Buneman series (P, Q auxiliary vectors) where k= iteration

$$T^{(k)} = T^{2^{k}}$$
$$[B^{(-1)}]^{(k)} = -\sum_{l=1}^{2^{k}} a_{(kl)} * [B - 2\cos(\theta_{kl}) * T]^{(-1)}$$
$$\theta_{kl} = \left(l - \frac{1}{2}\right) * \frac{p}{2^{jq}}$$

•
$$a_{kl} = (-1)^l / 2^k * \sin(\theta_{kl})$$

Initialize $q_j^{(0)} = F_j$ and $p_j^{(0)} = 0$ • Then for k = 1, ..., jq for j=1,..., $2^{jq-k} - 1$ jq= $log_2(n+1)$

Solve
$$B^{(k-1)}X = p_{2j-1}^{(k-1)} + p_{2j+1}^{(k-1)} - q_j^{(k-1)}$$
 for X
 $p_j^{(k)} = p_j^{(k-1)} - X$
 $q_j^{(k)} = q_{2j-1}^{(k-1)} + q_{2j+1}^{(k-1)} - 2p_j^{(k)}$

- Introduction
- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations
- Results
- Future Work

Implementation issues – CR

- Storage demands: 5 vectors
 - 3 diagonals
 - 1 rhs vector
 - 1 solution vector
- Data dependencies between iterations
 - Both in Forward Reduction and Backward Substitution phase

Implementation issues – Buneman

- High storage demands
- In every forward reduction step, matrices B and T are modified
 - Must be stored for the backward phase
- Possible solutions :
 - Store them
 - Recalculate them in every step

- Introduction
- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations
- Results
- Future Work

Optimizations - CR

- Dynamic calculation of the block dimension
 - The geometry changes while the size of the system is growing
- Padding
 - Eliminate the if branches in Backward Substitution kernel

Optimizations - Buneman (1/2)

- CPU implementation
 - MKL & LAPACK libraries
- GPU implementation
 - CUBLAS & CULAPACK libraries
- Routines for the BLAS operations
 - Matrix-Matrix Multiplication
 - Matrix-Vector Multiplication
 - Inverse Matrix
 - Matrix addition
 - Vector addition
 - Scalar Matrix Multiplication

Optimizations - Buneman (2/2)

- Restructure the code by merging math operations to use optimally the libraries
- Avoid the inversion of matrix B by solving a linear system
- "Sliding window" technique to examine larger problems
 - Asynchronous memory transfers

- Introduction
- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations

Results

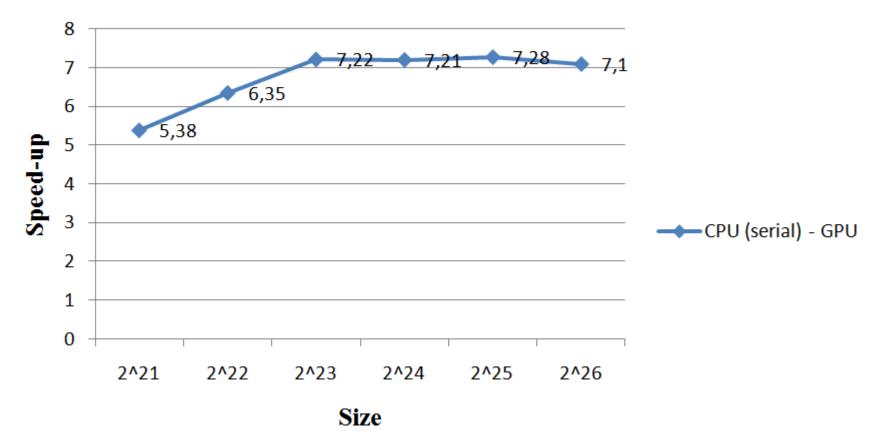
• Future Work

Experiments

- The hardware used for the experiments is :
 - Intel Xeon CPU W3550 @3.07 GHz with 8GB RAM and four cores
 - NVIDIA GeForce GTX680
- clock() function , time presented in seconds
- Full optimizations turned on
- CPU: icc compiler
- GPU: nvcc compiler
- CR
 - Sequential CPU implementation
 - GPU implementation
- BCR
 - Sequential CPU implementation
 - Parallel CPU implementation
 - GPU implementation

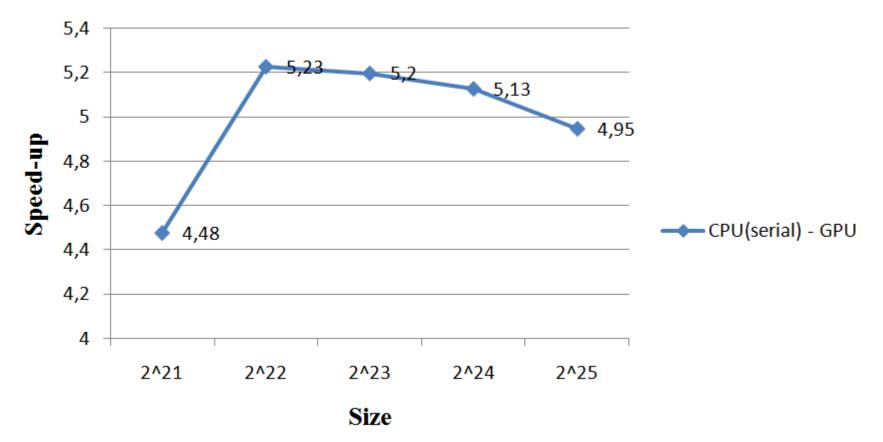
Results - CR

CR Speed-up (Single precision)

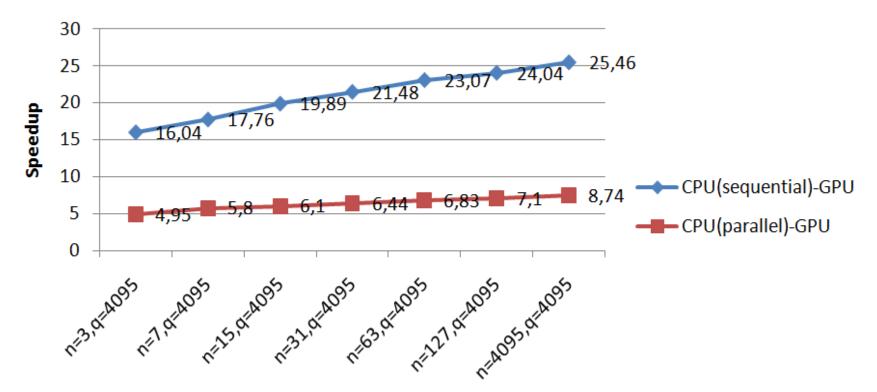


Results - CR

CR Speed-up (Double precision)

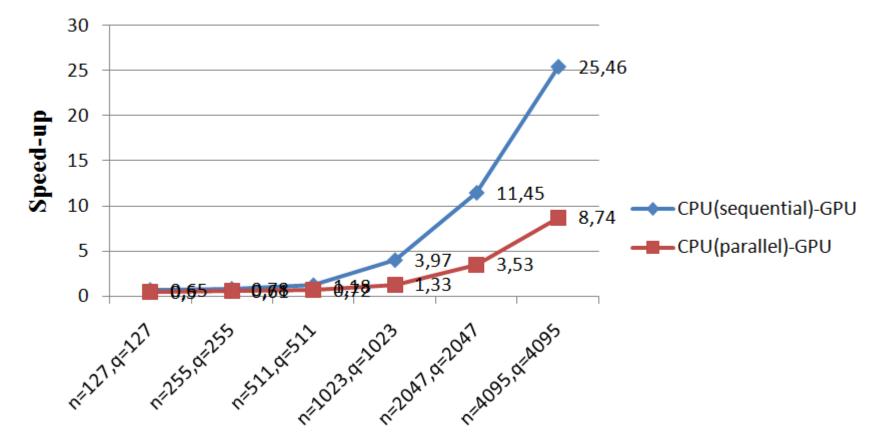


Speedup - Single Precision

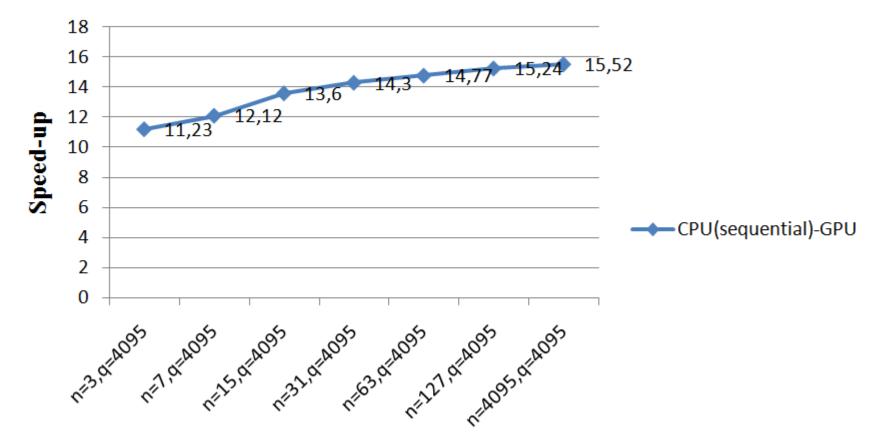


 GPU results shown above arise from "sliding window" version . Performance from first version is < 1% different . CPU results arise from "inverse" version. Performance from "solver" version is the same.

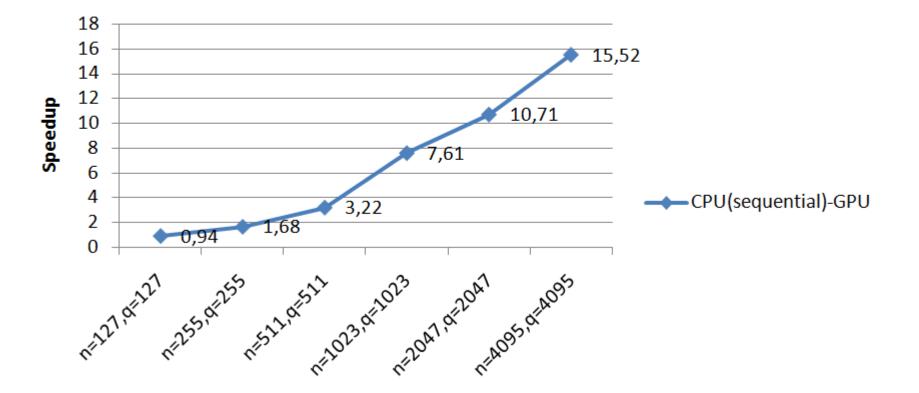
Speedup-Single precision



Speedup-Double precision



Speedup-Double precision



- Introduction
- Review of related work
- Cyclic Reduction Algorithm
- Block Cyclic Reduction Algorithm
- Implementation
- Optimizations
- Results
- Future Work

Future Work

- As a case study we plan to apply Buneman method to a reaction-diffusion PDE
- This PDE is considered as a common simplified model for studying the expansion of gliomata

Ευχαριστούμε! Ερωτήσεις;