Study and implementation of computational
methods for Differential Equations in

heterogeneous systems

Asimina Vouronikoy - Eleni Zisiou

EMIXEIPHXIAKO TMPOIPAMMA
EKMAIAEYZH KAI AIA BIOY MAGHZH J 2E0027|;|$

ERLEVOVON TNV UOLVWYLa TNE YVWON

YNOYPTEIO MAIAEIAL KAl OPHIKEYMATQN ﬁlﬂA' 000000000000000000

EUP“’"““"IEV(I’U'I EIAIKH YNHPEXZIA AIAXEIPIZHEX

W"(IIVWVI

gio
Me) ouyxpnparodétnon tng EAAadag kat g Eupwmaiki¢ Evwong

Outline

Introduction

Review of related work

Cyclic Reduction Algorithm
Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Plans

Introduction

= 1D/2D Poisson differential equations:
1. Discretization of the PDE domain into a grid of evenly spaced nodes

2. Discretization of the restriction of the PDE equation on the grid
nodes with one of :

— Finite Difference (FD) methods
— Finite Element methods (FEM)
— Finite Volume (FV) methods

3. Solution of the resulting linear system
— lterative (Jacobi, Gauss-Seidel, SOR, Multigrid etc)
— Direct methods (Gauss, Cholesky, Thomas, FFT etc).

Tridiagonal solvers

* Tridiagonal solvers are tools of high importance in wide range
of engineering and scientific applications

= Applications include:
e Computer graphics
* Financial applications
* Fluid dynamics
* Modeling of medical problems

= Various solving methods:
* Thomas algorithm
e Cyclic reduction method
* Recursive doubling etc.

Contribution

* Extremely intensive computations = need to solve very fast
PDEs in 2D problems

e Contribution

— Algorithms for solving
* tridiagonal systems arising from 1D PDEs

e and block tridiagonal systems arising from 2D PDEs
— CPU implementation
— GPU implementation

— Model : Poisson differential equation in 1D and 2D

CPUs vs. GPUs

= CPUs

* Few cores optimized for serial processing
* Large caches

* Slow context switch

* General purpose computation

= GPUs

* Thousands of smaller, more efficient cores designed for parallel
performance

* Small caches
* Fast hardware implemented context switch
* Need of intensive and simple operation

Thread

3 -

Thread Block

R

Grd O
Blode (0, 0) || Block (1, 0) || Black (2, 0)
Blodk (0, 1) || Block (1, 1) || Black (2, 1) | |
Grid 1

Bloclk (0, 0) Block (1. O)

Block [0, 1) Block (1. 1)

Block (0, 2) Block {1 2

CUDA programming model

. Per-thread local

P ITIC Yy

¥ Perblock shared

TR Yy

Global memdory

Introduction

Review of related work

Cyclic Reduction Algorithm
Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Work

Review of related work

* Most popular discretization methods
— Finite Difference
— Finite Element

* Most popular linear solving methods
— Parallel Cyclic Reduction
— Conjugate Gradient
— Jacobi

* Most compared to
— CUBLAS library
— CUSPARCE library
— MKL library

Introduction

Review of related work

Cyclic Reduction Algorithm
Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Work

Cyclic Reduction Algorithm (1/2)

= 1D problems tridiagonal linear system

= Two step algorithm
— Forward reduction

* Combine linearly the equations in order to eliminate the odd numbered
unknowns

e Unknowns are re-ordered
* Process is continued until one equation with one unknown is left

— Backward substitution

* Solve the one equation left and find the unknown x
* Find all unknowns from the previous steps

= Each phase consists of log,(n+ 1) steps, n = system size

u n=2p—1

Cyclic Reduction Algorithm (2/2)

X, X2 X3 Xy X3 X X7

? ¢ 2 2 %2 o2 90

7 P2 P P4 Ps Pe P

Introduction

Review of related work

Cyclic Reduction Algorithm

Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Work

Block Cyclic Reduction Algorithm
(1/2)

= 2 D problems — block tridiagonal systems
Solutionof A*X=F

(B T \
T BT
T BT

T B T
\ B T,

where B is tridiagonal matrix and T is a diagonal matrix

Block Cyclic Reduction Algorithm
(2/2)

Extension of Cyclic Reduction to block tridiagonal systems (n
blocks of size q)

After 1og,(n+1) reductions, a 1x1 block system needs to be
solved

Formulation is numerically unstable

!

Buneman variant

Buneman algorithm

 Buneman series (P, Q auxiliary vectors) where k= iteration

T = 2% ok

[BCD0 = —Z aqay * [B — 2 cos(By) *]V
—1

1 p
%:(“E)*ﬁ

ag = (—1)!/2% * sin(6y)

0 0
Initialize q§) = F; and pj() = 0
eThenfork=1,..,jq forj=1,.., 2797 % -1 jg=log,(n+1)

k— _ . (k=1) (k-1) (k—-1)
Sgcl)ve B((k ?)X =p;j_1 t Py —4; forX
P; ~ = b —X

(k) (k=1) , (&= 5 &)
)

94~ = Y251 T Y2541

Introduction

Review of related work

Cyclic Reduction Algorithm
Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Work

Implementation issues — CR

e Storage demands: 5 vectors

— 3 diagonals
— 1 rhs vector
— 1 solution vector

 Data dependencies between iterations

— Both in Forward Reduction and Backward Substitution phase

Implementation issues — Buneman

* High storage demands

* In every forward reduction step, matrices Band T are
modified
— Must be stored for the backward phase

* Possible solutions :
— Store them
— Recalculate them in every step

Introduction

Review of related work

Cyclic Reduction Algorithm
Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Work

Optimizations - CR

* Dynamic calculation of the block dimension

— The geometry changes while the size of the system is growing

* Padding

— Eliminate the if — branches in Backward Substitution kernel

Optimizations - Buneman (1/2)

 CPU implementation
— MKL & LAPACK libraries

* GPU implementation
— CUBLAS & CULAPACK libraries

* Routines for the BLAS operations
e Matrix-Matrix Multiplication
* Matrix-Vector Multiplication
Inverse Matrix
Matrix addition
Vector addition
Scalar Matrix Multiplication

Optimizations - Buneman (2/2)

Restructure the code by merging math operations to use
optimally the libraries

Avoid the inversion of matrix B by solving a linear system

”Sliding window” technique to examine larger problems

— Asynchronous memory transfers

Introduction

Review of related work

Cyclic Reduction Algorithm
Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Work

Experiments

The hardware used for the experiments is :
¢ Intel Xeon CPU W3550 @3.07 GHz with 8GB RAM and four cores
e NVIDIA GeForce GTX680

clock() function, time presented in seconds
Full optimizations turned on

CPU: icc compiler
GPU: nvcc compiler

CR

— Sequential CPU implementation
— GPU implementation

BCR
— Sequential CPU implementation
— Parallel CPU implementation
— GPU implementation

Speed-up

N L N = I N I v o

Results - CR

CR Speed-up (Single precision)

6,35

5,38

—4#—CPU (serial) - GPU

2721

2722 2723 2724 2725 2726

Size

Speed-up

5,4

5,2

R
co

R
n)]

4,2

Results - CR

CR Speed-up (Double precision)

13

/ 4,95

/

/4}43 —4— CPU(serial) - GPU

2721 2722 2723 2724 2725

Size

Results — Buneman

Speedup - Single Precision

30

25

20

15

Speedup

10

W 8,74 —— CPU(sequential)-GPU
5 : : J : :

—fli— CPU(parallel)-GPU

GPU results shown above arise from “sliding window” version . Performance from first
version is < 1% different . CPU results arise from “inverse” version. Performance from
“solver” version is the same.

Results — Buneman

Speedup-Single precision

[

Speed-up

/ /- 874 —4—CPU(sequential)-GPU
== CPU(parallel)-GPU

Speed-up

Results — Buneman

Speedup-Double precision

18

16

14

15,52

12
10

—4—CPU(sequential)-GPU

o T (O T o I o

Speedup

Results — Buneman

Speedup-Double precision

18
16
15,52

14 //
12
10 10,71
8 7,61
b Jf#,
: 3,22 —4—CPU(sequential)-GPU
2 m’ﬁﬁi/ :
0 ’ I I T T T I

A) N Yo A \e)

% Nl N 47] S
;:9 A ﬁj(ji ‘é;;\-\ Q"l?’ K o\ ch(a‘
I & & N 2> N

Introduction

Review of related work

Cyclic Reduction Algorithm
Block Cyclic Reduction Algorithm
Implementation

Optimizations

Results

Future Work

Future Work

As a case study we plan to apply Buneman method to a
reaction-diffusion PDE

This PDE is considered as a common simplified model for
studying the expansion of gliomata

Euyxaplotoupue!
Epwtnoselc;

