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Introduction 

 1D/2D Poisson differential equations: 
 

1. Discretization of the PDE domain into a grid of evenly spaced nodes 

 

2.  Discretization of the restriction of the PDE equation on the grid 
nodes with one of : 

– Finite Difference (FD) methods 

– Finite Element methods (FEM)  

– Finite Volume (FV) methods 

 

3. Solution of the resulting linear system 
– Iterative (Jacobi, Gauss-Seidel, SOR, Multigrid etc)  

– Direct methods (Gauss, Cholesky, Thomas, FFT etc). 

 

 

 

 

 

 

 
 

 

 
 

 

 



Tridiagonal solvers 

• Tridiagonal solvers are tools of high importance in wide range 
of engineering and scientific applications  
 

 Applications include: 
• Computer graphics 

• Financial applications 

• Fluid dynamics 

• Modeling of  medical problems 
 

 Various solving methods: 
• Thomas algorithm  

• Cyclic reduction method  

• Recursive doubling  etc. 

 

 



Contribution 

• Extremely intensive computations  need to solve very fast 
PDEs in 2D problems 

 

• Contribution 
– Algorithms for solving  

• tridiagonal systems arising from 1D PDEs 

• and block tridiagonal systems arising from 2D PDEs  

– CPU implementation 

– GPU implementation 

– Model : Poisson differential equation in 1D and 2D 



CPUs vs. GPUs 

 CPUs  
• Few cores optimized for serial processing  

• Large caches 

• Slow context switch  

• General purpose computation 

 GPUs 
• Thousands of smaller, more efficient cores designed for parallel 

performance 

• Small caches 

• Fast hardware implemented context switch 

• Need  of intensive and simple operation 

 



CUDA programming model 
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Review of related work 
 

• Most popular discretization methods 
– Finite Difference  
– Finite Element 

 

• Most popular linear solving methods  
– Parallel Cyclic Reduction  
– Conjugate Gradient  
– Jacobi 

 

• Most compared to  
– CUBLAS library 
– CUSPARCE library 
– MKL library 
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Cyclic Reduction Algorithm (1/2) 
 

 1D problems                tridiagonal linear system 
 Two step algorithm 

–  Forward reduction 
• Combine linearly the equations in order to eliminate the odd numbered 

unknowns  
• Unknowns are re-ordered  
• Process is continued until one equation with one unknown is left 

 
– Backward substitution 

• Solve the one equation left and find the unknown x 
• Find all unknowns from the previous steps 

 

 Each phase consists of                     steps, n = system size 

 n = 



Cyclic Reduction Algorithm (2/2) 
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Block Cyclic Reduction Algorithm 
(1/2) 

 2 D problems            block tridiagonal systems 
Solution of   A * X = F 

 
 

    
 
 
 

A =                                                         
                                           
 
 
 
 
 

where B is tridiagonal matrix and T is a diagonal matrix                                                                                             



Block Cyclic Reduction Algorithm 
(2/2) 

 • Extension of Cyclic Reduction to block tridiagonal systems (n 
blocks of size q) 
 

• After                        reductions, a 1x1 block system needs to be 
solved 
 

• Formulation is numerically unstable   

 

• Buneman variant 

 

 

 

 



Buneman algorithm 

• Buneman series (P, Q auxiliary vectors) where k= iteration 
 
  
 

 
 

•  
 

Initialize                        and                    
• Then for k =  1, .. ,jq      for j=1,…, 2𝑗𝑞−𝑘 − 1 jq=  
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Implementation issues – CR 

• Storage demands: 5 vectors 
– 3 diagonals 

– 1 rhs vector 

– 1 solution vector 

 

• Data dependencies between iterations 
– Both in Forward Reduction and Backward Substitution phase 



Implementation issues – Buneman 

• High storage demands 

 

• In every forward reduction step, matrices B and T are 
modified 
– Must be stored for the backward phase 

 

• Possible solutions : 
– Store them  

– Recalculate them in every step  
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Optimizations - CR 

• Dynamic calculation of the block dimension 
– The geometry changes while the size of the system is growing 

 

• Padding 
– Eliminate the if – branches in Backward Substitution kernel 



Optimizations - Buneman (1/2) 

• CPU implementation 
– MKL & LAPACK libraries 

 
• GPU implementation  

– CUBLAS & CULAPACK libraries 

 
• Routines for the BLAS operations 

• Matrix-Matrix Multiplication 
• Matrix-Vector Multiplication 
• Inverse Matrix 
• Matrix addition 
• Vector addition 
• Scalar Matrix Multiplication 

 



Optimizations - Buneman (2/2) 

• Restructure the code by merging math operations to use 
optimally the libraries 

 

• Avoid the inversion of matrix B by solving a linear system 

 

• ”Sliding window” technique to examine larger problems 
– Asynchronous memory transfers 

 



• Introduction 

• Review of related work 

• Cyclic Reduction Algorithm 

• Block Cyclic Reduction Algorithm 

• Implementation  

• Optimizations 

• Results 

• Future Work 



Experiments 

• The hardware used for the experiments is : 
• Intel Xeon CPU W3550 @3.07 GHz with 8GB RAM and four cores 
• NVIDIA GeForce GTX680 
 

• clock() function , time  presented in seconds 
 

• Full optimizations turned on 
 

• CPU: icc compiler 
• GPU: nvcc compiler 
 

• CR 
– Sequential CPU implementation 
– GPU implementation 

 

• BCR 
– Sequential CPU implementation 
– Parallel CPU implementation 
– GPU implementation 

 
 

 



Results - CR 

 



Results - CR 

 



Results – Buneman    

 

 

• GPU results  shown above arise from “sliding window” version . Performance from first 
version is < 1% different . CPU results arise from “inverse” version. Performance from 
“solver” version is the same. 

 



Results – Buneman  

 



Results – Buneman  

 



Results – Buneman  
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Future Work 

• As a case study we plan to apply Buneman method to a 
reaction-diffusion PDE  

 

• This PDE is considered as a common simplified model for 
studying the expansion of gliomata   
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