Study and implementation of computational
methods for Differential Equations in

heterogeneous systems
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Introduction

= 1D/2D Poisson differential equations:
1. Discretization of the PDE domain into a grid of evenly spaced nodes

2. Discretization of the restriction of the PDE equation on the grid
nodes with one of :

— Finite Difference (FD) methods
— Finite Element methods (FEM)
— Finite Volume (FV) methods

3. Solution of the resulting linear system
— lterative (Jacobi, Gauss-Seidel, SOR, Multigrid etc)
— Direct methods (Gauss, Cholesky, Thomas, FFT etc).



Tridiagonal solvers

* Tridiagonal solvers are tools of high importance in wide range
of engineering and scientific applications

= Applications include:
e Computer graphics
* Financial applications
* Fluid dynamics
* Modeling of medical problems

= Various solving methods:
* Thomas algorithm
e Cyclic reduction method
* Recursive doubling etc.



Contribution

* Extremely intensive computations = need to solve very fast
PDEs in 2D problems

e Contribution

— Algorithms for solving
* tridiagonal systems arising from 1D PDEs

e and block tridiagonal systems arising from 2D PDEs
— CPU implementation
— GPU implementation

— Model : Poisson differential equation in 1D and 2D



CPUs vs. GPUs

= CPUs

* Few cores optimized for serial processing
* Large caches

* Slow context switch

* General purpose computation

= GPUs

* Thousands of smaller, more efficient cores designed for parallel
performance

* Small caches
* Fast hardware implemented context switch
* Need of intensive and simple operation
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Review of related work

* Most popular discretization methods
— Finite Difference
— Finite Element

* Most popular linear solving methods
— Parallel Cyclic Reduction
— Conjugate Gradient
— Jacobi

* Most compared to
— CUBLAS library
— CUSPARCE library
— MKL library
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Cyclic Reduction Algorithm (1/2)

= 1D problems tridiagonal linear system

= Two step algorithm
— Forward reduction

* Combine linearly the equations in order to eliminate the odd numbered
unknowns

e Unknowns are re-ordered
* Process is continued until one equation with one unknown is left

— Backward substitution

* Solve the one equation left and find the unknown x
* Find all unknowns from the previous steps

= Each phase consists of log,(n+ 1) steps, n = system size

u n=2p—1



Cyclic Reduction Algorithm (2/2)
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Block Cyclic Reduction Algorithm
(1/2)

= 2 D problems — block tridiagonal systems
Solutionof A*X=F
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where B is tridiagonal matrix and T is a diagonal matrix




Block Cyclic Reduction Algorithm
(2/2)

Extension of Cyclic Reduction to block tridiagonal systems (n
blocks of size q)

After 1og,(n+1) reductions, a 1x1 block system needs to be
solved

Formulation is numerically unstable

!

Buneman variant



Buneman algorithm

 Buneman series (P, Q auxiliary vectors) where k= iteration
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Implementation issues — CR

e Storage demands: 5 vectors

— 3 diagonals
— 1 rhs vector
— 1 solution vector

 Data dependencies between iterations

— Both in Forward Reduction and Backward Substitution phase



Implementation issues — Buneman

* High storage demands

* In every forward reduction step, matrices Band T are
modified
— Must be stored for the backward phase

* Possible solutions :
— Store them
— Recalculate them in every step
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Optimizations - CR

* Dynamic calculation of the block dimension

— The geometry changes while the size of the system is growing

* Padding

— Eliminate the if — branches in Backward Substitution kernel



Optimizations - Buneman (1/2)

 CPU implementation
— MKL & LAPACK libraries

* GPU implementation
— CUBLAS & CULAPACK libraries

* Routines for the BLAS operations
e Matrix-Matrix Multiplication
* Matrix-Vector Multiplication
Inverse Matrix
Matrix addition
Vector addition
Scalar Matrix Multiplication



Optimizations - Buneman (2/2)

Restructure the code by merging math operations to use
optimally the libraries

Avoid the inversion of matrix B by solving a linear system

”Sliding window” technique to examine larger problems

— Asynchronous memory transfers
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Experiments

The hardware used for the experiments is :
¢ Intel Xeon CPU W3550 @3.07 GHz with 8GB RAM and four cores
e NVIDIA GeForce GTX680

clock() function, time presented in seconds
Full optimizations turned on

CPU: icc compiler
GPU: nvcc compiler

CR

— Sequential CPU implementation
— GPU implementation

BCR
— Sequential CPU implementation
— Parallel CPU implementation
— GPU implementation
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Results — Buneman

Speedup - Single Precision
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GPU results shown above arise from “sliding window” version . Performance from first
version is < 1% different . CPU results arise from “inverse” version. Performance from
“solver” version is the same.



Results — Buneman
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Speed-up

Results — Buneman
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Future Work

As a case study we plan to apply Buneman method to a
reaction-diffusion PDE

This PDE is considered as a common simplified model for
studying the expansion of gliomata
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