
Study and implementation of computational
methods for Differential Equations in

heterogeneous systems

Asimina Vouronikoy - Eleni Zisiou

Outline

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Plans

Introduction

 1D/2D Poisson differential equations:

1. Discretization of the PDE domain into a grid of evenly spaced nodes

2. Discretization of the restriction of the PDE equation on the grid
nodes with one of :

– Finite Difference (FD) methods

– Finite Element methods (FEM)

– Finite Volume (FV) methods

3. Solution of the resulting linear system
– Iterative (Jacobi, Gauss-Seidel, SOR, Multigrid etc)

– Direct methods (Gauss, Cholesky, Thomas, FFT etc).

Tridiagonal solvers

• Tridiagonal solvers are tools of high importance in wide range
of engineering and scientific applications

 Applications include:
• Computer graphics

• Financial applications

• Fluid dynamics

• Modeling of medical problems

 Various solving methods:
• Thomas algorithm

• Cyclic reduction method

• Recursive doubling etc.

Contribution

• Extremely intensive computations  need to solve very fast
PDEs in 2D problems

• Contribution
– Algorithms for solving

• tridiagonal systems arising from 1D PDEs

• and block tridiagonal systems arising from 2D PDEs

– CPU implementation

– GPU implementation

– Model : Poisson differential equation in 1D and 2D

CPUs vs. GPUs

 CPUs
• Few cores optimized for serial processing

• Large caches

• Slow context switch

• General purpose computation

 GPUs
• Thousands of smaller, more efficient cores designed for parallel

performance

• Small caches

• Fast hardware implemented context switch

• Need of intensive and simple operation

CUDA programming model

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Work

Review of related work

• Most popular discretization methods
– Finite Difference
– Finite Element

• Most popular linear solving methods
– Parallel Cyclic Reduction
– Conjugate Gradient
– Jacobi

• Most compared to
– CUBLAS library
– CUSPARCE library
– MKL library

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Work

Cyclic Reduction Algorithm (1/2)

 1D problems tridiagonal linear system
 Two step algorithm

– Forward reduction
• Combine linearly the equations in order to eliminate the odd numbered

unknowns
• Unknowns are re-ordered
• Process is continued until one equation with one unknown is left

– Backward substitution

• Solve the one equation left and find the unknown x
• Find all unknowns from the previous steps

 Each phase consists of steps, n = system size

 n =

Cyclic Reduction Algorithm (2/2)

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Work

Block Cyclic Reduction Algorithm
(1/2)

 2 D problems block tridiagonal systems
Solution of A * X = F

A =

where B is tridiagonal matrix and T is a diagonal matrix

Block Cyclic Reduction Algorithm
(2/2)

 • Extension of Cyclic Reduction to block tridiagonal systems (n
blocks of size q)

• After reductions, a 1x1 block system needs to be
solved

• Formulation is numerically unstable

• Buneman variant

Buneman algorithm

• Buneman series (P, Q auxiliary vectors) where k= iteration

•

Initialize and
• Then for k = 1, .. ,jq for j=1,…, 2𝑗𝑞−𝑘 − 1 jq=

 Solve Β(k−1)X = 𝑝2𝑗−1
(𝑘−1)

+ 𝑝2𝑗+1
(𝑘−1)

− 𝑞𝑗
(𝑘−1)

 for X

 pj
(𝑘)

= pj
(k−1)

− X

 qj
(k)

= q2j−1
(k−1)

+ q2j+1
(k−1)

− 2pj
(k)

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Work

Implementation issues – CR

• Storage demands: 5 vectors
– 3 diagonals

– 1 rhs vector

– 1 solution vector

• Data dependencies between iterations
– Both in Forward Reduction and Backward Substitution phase

Implementation issues – Buneman

• High storage demands

• In every forward reduction step, matrices B and T are
modified
– Must be stored for the backward phase

• Possible solutions :
– Store them

– Recalculate them in every step

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Work

Optimizations - CR

• Dynamic calculation of the block dimension
– The geometry changes while the size of the system is growing

• Padding
– Eliminate the if – branches in Backward Substitution kernel

Optimizations - Buneman (1/2)

• CPU implementation
– MKL & LAPACK libraries

• GPU implementation

– CUBLAS & CULAPACK libraries

• Routines for the BLAS operations

• Matrix-Matrix Multiplication
• Matrix-Vector Multiplication
• Inverse Matrix
• Matrix addition
• Vector addition
• Scalar Matrix Multiplication

Optimizations - Buneman (2/2)

• Restructure the code by merging math operations to use
optimally the libraries

• Avoid the inversion of matrix B by solving a linear system

• ”Sliding window” technique to examine larger problems
– Asynchronous memory transfers

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Work

Experiments

• The hardware used for the experiments is :
• Intel Xeon CPU W3550 @3.07 GHz with 8GB RAM and four cores
• NVIDIA GeForce GTX680

• clock() function , time presented in seconds

• Full optimizations turned on

• CPU: icc compiler
• GPU: nvcc compiler

• CR
– Sequential CPU implementation
– GPU implementation

• BCR
– Sequential CPU implementation
– Parallel CPU implementation
– GPU implementation

Results - CR

Results - CR

Results – Buneman

• GPU results shown above arise from “sliding window” version . Performance from first
version is < 1% different . CPU results arise from “inverse” version. Performance from
“solver” version is the same.

Results – Buneman

Results – Buneman

Results – Buneman

• Introduction

• Review of related work

• Cyclic Reduction Algorithm

• Block Cyclic Reduction Algorithm

• Implementation

• Optimizations

• Results

• Future Work

Future Work

• As a case study we plan to apply Buneman method to a
reaction-diffusion PDE

• This PDE is considered as a common simplified model for
studying the expansion of gliomata

 Ευχαριστοφμε!

 Ερωτήσεις;

