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THE PROBLEM 
   Despite continual advances in imaging 

technology, glioma cells invade far beyond the 
abnormality shown on clinical imaging (e.g. CT, 
MRI, or PET) and even beyond gross and 
microscopic observations at autopsy. The extent 
is certainly beyond that guiding present-day 
radiotherapy of gliomas, which targets therapy to 
only an arbitrary 2 cm beyond the imaged bulk 
mass of the tumor. Clearly, it is the invasion into 
the normal-appearing surrounding tissue that is 
responsible for the tumor recurrence even in 
those tumors that are radio-sensitive. 



HISTORY OF THE USE OF 
MATHEMATICAL MODELING IN THE 
STUDY 
OF THE PROLIFERATIVE-INVASIVE 
GROWTH OF GLIOMAS 
Hana L.P. Harpold, BS, Ellsworth C. Alvord, Jr., MD, 
and Kristin R. Swanson, PhD, The Evolution of 
Mathematical Modeling of Glioma Proliferation and 
Invasion, J Neuropathol Exp Neurol, Vol. 66, No. 1, 
January 2007, pp. 1-9 



EARLY GLIOMA MODEL DEVELOPMENT: 
GROWTH AND DIFFUSION 
 In the early 1990s, Murray’s group defined the 

basic spatio-temporal model, based on the 
classical definition of cancer, as uncontrolled 
proliferation of cells with the capacity to invade 
and metastasize. 

 This model was simplified by taking advantage of 
the fact that gliomas practically never 
metastasize outside the brain, producing a 
conservation diffusion equation, written in words 
in Equation 1. 

 rate of change of glioma cell density = net 
diffusion (motility) of glioma cells in grey and 
white matter + net proliferation of glioma cell 



EARLY GLIOMA MODEL DEVELOPMENT: 
GROWTH AND DIFFUSION 
 Under the assumption of classical gradient-driven 

Fickian diffusion, this word equation could be 
quantified mathematically to produce Equation 2. 
 

 Equation 2 describes the dynamics of glioma cells 
where c(x,t) is the concentration of tumor cells at 
location x and time t. D is the diffusion coefficient 
representing the net motility of glioma cells and Q 
represents the net proliferation rate of the glioma 
cells. The ² term is the spatial differentiation 
operator, which is in effect a gradient. Initial 
conditions for the model were c(x,0) = f(x), where f(x) 
defined the initial spatial distribution of malignant 
cells, presumably a point source at the center of 
tumorigenesis. 



BRAIN HETEROGENEITY: ISOTROPIC 
MIGRATION 
 The original analyses of the mathematical model 

assumed homogenous brain tissue so that the 
diffusion coefficient D, defining random motility of 
glioma cells, was constant and uniform throughout 
the brain. 

 Recognizing that the model had to be improved to 
accommodate the advances in MRI technology that 
were coming along in parallel, Swanson et al 
reformulated the model to accept different diffusion 
rates in grey and white matter. 

 This modified model introduced the complex geometry 
of the brain and presented diffusion (motility) as a 
function of the spatial variable x to accommodate the 
observation that glioma cells demonstrate greater 
motility in white matter than in grey matter. 



BRAIN HETEROGENEITY: ISOTROPIC 
MIGRATION 
 The original word equation, Equation 1, 

continued to apply, but the mathematics changed 
to involve a spatially varying diffusion 
parameter, D(x), as shown in Equation 3. 
 

 D(x) is still defined as the diffusion coefficient 
defining the net motility of the glioma cells but 
with D(x) = DG or DW, different constants for x in 
grey and white matter, respectively. 
 



AN EXAMPLE: 
BRAIN TUMOR GROWTH 
PREDICTION 
 
Md. Rajibul Islam, Norma Alias and Siew Young 
Ping, An application of PDE to predict brain tumor 
growth using high performance computing system, 
daffodil international university journal of science 
and technology, vol 6, issue 1, july 2011 



THE MATHEMATICAL MODEL 
 
 
 Γ: generation coefficient, L: death/decay 

coefficient, Q: diffusion coefficient, W: drift 
velocity field 

 The explicit finite-difference method has been 
used to solve the parabolic equation. 

 The finite-differences equations are converted 
into matrix form. 



THE NUMERICAL SOLUTION 
 Red Black Gauss Seidel Iteration Method is used 

to solve the pde 
 division of arrays among local processors. 

 The simple Gauss Seidel Iterative method is 
more appropriate for a sequential program. 

 Time execution, speedup, efficiency, effectiveness 
and temporal performance are the metrics used 
for comparing parallel and sequential algorithms. 



THE HIGH PERFORMANCE COMPUTING 
SYSTEM 
 The cluster contains 

 6 Intel Pentium IV CPUs (each with a storage of 
40GB, speed 1.8MHz and memory 256 MB) and  

 two servers (each with 2 processors, a storage of 
40GB, speed AMDAthlon (tm) MP processor 1700++ 
MHz and memory 1024 MB) 

 connected with internal network Intel 10/100 NIC 
under RetHat Linux 9.2 

 PVM: Parallel Virtual Machine 
 master task 
 worker tasks 

 



PERFORMANCE ANALYSIS 
Red-Black Gauss Seidel with 
PVM (8 CPU) 

Gauss Seidel with Sequence 
Algorithm (1 CPU) 

Time (second) 10.90019 83.153291 

Convergence 2.3911e-2 2.3911 e-2 

Number of iteration  200 200 

Number of 
processor 

Time 
execution 
(Second) 

Speedup Efficiency Effectivenes
s 

Temporal 
Performanc
e 

1 83.153291 1 1 0.012025982 0.012025982 

2 41.84082 1.987372 0.993686 0.023749205 0.023900195 

3 27.8878808 2.981708 0.993903 0.035639322 0.035857963 

4 20.98909 3.961739 0.990435 0.047188072 0.047643800 

5 16.9 4.920313 0.984063 0.058228557 0.059171598 

6 14.262847 5.830063 0.971677 0.068126448 0.070112229 

7 12.362682 6.726153 0.960879 0.077724154 0.080888597 

8 10.90019 7.628609 0.953576 0.087482527 0.091741520 



RESULTS- EXPANSION RATE OF BRAIN 
TUMOR 



CA2 
CELLULAR AUTOMATA MODELS 
AND 
SELF-ORGANIZED CHAOS 
IN CANCER GROWTH 
  



INTRODUCTION  1/2 
NOMENCLATURE 

 
CA2 :  Cellular Automaton (CA) 

   for CAncer Growth 
 

 
 

in silico population dynamics 
for cancer growth  



INTRODUCTION  2/2 
ASSUMPTIONS 

2-dimensional generalized and probabilistic 
cellular automata with fixed lattice structure  

 
Each unit (cell) is a 4-state element and at any 

instance can be found in one of the following 
conditions: normal, immature cancer, matured 
cancer, or dead.  



METHODS  1/5 
2-D CA,   4-STATE ELEMENTS 

 
2-dimensional CA with 4-state elements 
 
 Normal, denoted by N 
 cancer, denoted by c (immature phase) 
 cancer, in division phase denoted by C 
 dead, denoted by D 



METHODS  2/5 
CELL  TIME  CHARACTERISTICS 

Each cell is characterized by a triplet of 
values 

 
 lifetime, (TL) : the total period that a specific cell 

is alive 
 
 maturity period or reproduction age, (TR) :  
    time necessary a cell to become “mature enough” 

to divide and proliferate 
 
 dissolution time, (TD) :  
    the time necessary the remainings of a dead cell 

to be exported and the specific grid site to set free 



METHODS  3/5 
RANDOM INITIALIZATION 

 
The triplet (TL, TR, TD) for each cell are 

individually defined in a random fashion 
 
Each one of these values is selected randomly from 

a range of corresponding permitted values with 
the use of the pseudo-random number generator 



METHODS  4/5 
CELL  DYNAMICS 
Local interactions of the CA that are simulating 

the real inter- and intra-cellular cellular 
dynamics: 

 
 N → c          a grid position that was occupied by a normal cell (N)  is 
                          taken by a new cancer cell (c) 
 
 c → C          an immature cancer (c) cell gets in the proliferation phase (C) 

 
 C →  2c       division to two immature cancer cells (2c) of a mature cancer cell (C) 
 
 c → D          death (D) of an immature cancer cell (c) 

 
 C → D         death (D) of a mature cancer cell (C) 

 
 N → D         death (D) of a normal cell (N) 

 
 D → N         a new normal cell (N) occupies an empty position of a dead cell (D) 
 
 D → c          a new cancer cell (c) occupies an empty grid position of a dead cell (D)  



METHODS  5/5 
INITIALIZATION 

 
Initially, (for t = 0), the CA is consisted of normal 

cells, except a user-defined number of cells that 
turned to cancer cells. 

 
 If the number of cancer cells is larger than one for 

t = 0, then a corresponding number of cancer cells 
subpopulations are evolving simultaneously on 
the same lattice. 

 
The precise grid position of the cancer cell(s) is 

(are) randomly selected 



RESULTS  1/4  
SINGLE CANCER CELL – NO 
PROLIFERATION 



RESULTS 2/4 
PROLIFERATION OF A SINGLE CANCER 
CELL 



RESULTS  3/4 
MULTIFOCAL PROLIFERATION OF  5  SUBPOPULATIONS 



RESULTS  4/4 
POPULATION EVOLUTION OF CANCER AND DEAD CELLS 



DISCUSSION 1/5 
REALISTIC  BEHAVIOR 
 The model is able to provide a simple and 

realistic explanation for the elimination of 
cancer cells at their early stage of 
development. 

 
The model is able to provide realistic 

simulations of cancer proliferation of a 
single cancer cell. 

 
The model is able to simulate simultaneous 

growth of multiple subpopulations within 
the same lattice   



DISCUSSION  2/5 
GOMPERTZ  MODEL 

Our findings is in agreement to the Gompertz 
mathematical model for cancer growth given by: 

 (1 )

0( )
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BV t V e
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DISCUSSION  3/5 
SQUID  BIOMAGNETOMETRY  -  BIOMAGNETIC MEASUREMENTS OF MAGNETIC FIELDS 
EMITTED BY TUMORS IN BRAIN, BREAST, VAGINA, OVARIES, PROSTATE 



DISCUSSION  4/5 
CHAOTIC DYNAMICS IN BIOMAGNETIC MEASUREMENTS OF CANCER 
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Fig. 1 Biomagnetic signal of MALT 
carcinoma of 4 sec durations (sampling 
frequency 256 Hz) 

Fig. 2  A 3-D reconstruction of the signal  
reveals a strange attractor 

Fig. 3  Correlation 
integrals 

Fig. 4  Slopes of correlation integrals and evidence 
for convergence to low-dimensional chaotic 
dynamics 



DISCUSSION  5/5 
CONCLUSIONS 
  
Our simulation findings provide evidence for emerging non-

linear complexity and self-organized chaotic dynamics in 
cancer growth. 

 
The hypothesis, of non-linear dynamics has been proposed for 

cancer dynamics at sub-cellular and cellular level. 
 
The same hypothesis seems to stand at the systemic level as 

well.  
 
Supported by non-linear analysis of biomagnetic 

measurements performed in vivo for various types of cancer 
with the use of SQUIDs    that indicated the existence of 
low-dimensional chaotic dynamics in the biomagnetic 
activity of malignant lesions. 
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