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Abstract—In large-scale datapaths, complex interconnection 

requirements limit resource utilization and often dominate 

critical path delay. A variety of scheduling and binding 

algorithms have been proposed to reduce routing 

requirements by clustering frequently-used set of operations 

to avoid longer, inter-operational interconnects. In this paper 

we introduce a grammar induction approach for datapath 

synthesis. The proposed approach deals with the problem of 

routing using information at a higher level of abstraction, 

even before resource scheduling and binding. It is applied on 

a given data flow graph (DFG) and builds a compact form of 

DFG by identifying and exploiting repetitive operations 

patterns with one or more outputs. Fully placed and routed 

circuits were successfully generated for complex designs that 

failed to be placed and routed by the standard manufacturer 

toolchain without applying our method. Moreover, placement 

and routing time was accelerated by 16% on average. Our 

grammar-based approach achieved 12% reduction in area on 

average, mostly as a result of reducing multiplexer sizes and 

the number of flip-flops, without noticeable adverse effect on 

clock frequency. Our comparison with a state of the art 

algorithm described in [8] shows that our approach 

outperforms it in both reduction in FPGA area and time to 

place and route the design.  

Keywords-Automatic synthesis; FPGAs; Grammar-based 

compression; Routing optimizations. 

I. INTRODUCTION 

One of the most challenging tasks of FPGA design is 
achieving fully routed circuits, especially in datapath-
dominated designs. Routing resources, in the form of 
multiplexers and interconnects can dominate both the area and 
the signal delay for the implementation of computationally 
intensive algorithms. Moreover, placement and routing (P&R) 
in modern FPGAs is a very computationally intensive process, 
potentially taking hours or days, even with the use of state-of-
the-art routing algorithms.  

Given the routing complexity for large designs, the pressure 
is growing for techniques that address the placement and 
routing problem at a higher abstraction level. In a typical high 
level synthesis approach, the tasks of resource allocation, 
scheduling and binding are applied on a set of primitive 
operations such as basic arithmetic and logic operations. The 
cost of routing resources per primitive functional unit is 
increasing rapidly in modern FPGAs. For example, the area 
cost of a 32-bit adder with a 4-input multiplexer on each input 
port is dominated by multiplexers (67% of the FPGA slices).  

 By clustering primitive operations (such as additions, 
shifts, bit selects, etc.) into macro-instructions, and 
implementing those as Macro FUs (MFUs), we can effectively 
reduce the amount of interconnect per operation. Generation of 

application specific macro-instructions is a common practice 
among instruction-set extensions designers [1, 2, 3, 7]. Such 
macro-instructions can substitute a set of primitive operations 
and consume fewer resources. Regular computation patterns 
that appear repetitively in a program DFG are strong candidates 
to be implemented as macro-instructions. As an example, 
macro-instruction K in Fig. 1.b, which consists of two 
successive additions, results to a more compact and efficient 
circuit, requiring fewer resources (i.e. multiplexers) than the 
individual primitive ADD operations. A macro-instruction can 
be designed to optimize a set of different criteria, such as 
silicon real-estate or latency, compared with the set of 
corresponding primitive operations.  

The generation of application specific macro-instructions is 
a two steps process: a) candidate instructions identification, 
after a space exploration of the application DFG and b) 
candidate instructions selection, based on a number of 
optimality criteria, like latency and area.  

In this work we propose the use of a grammar-induction 
approach for macro-instruction generation and selection. Our 
target is to exploit the characteristics of macro-instructions, 
which are in turn implemented as MFUs to reduce datapath 
complexity, and hence, reduce routing complexity and improve 
performance. Grammar induction is an established technique 
used in string and tree compression algorithms [13]. It is a very 
efficient approach to extract repetitive patterns from a data 
sequence and to create hierarchical models of such patterns that 
can be readily understood, analyzed and applied in other 
domains. In this paper we extend a grammar induction 
technique called Sequitur [13], to identify and generate a set of 
candidate macro-instructions. Our generated grammar has a 
regular hierarchal structure with few non-terminals, each 
serving as a potential macro-instruction.  

The contributions of our work are the following: 

• We introduce an efficient and simple grammar-based 
technique to identify highly repetitive computational 
patterns in a DFG. The hierarchal structure of the 
grammar resembles a multi-granularity computational 
representation of candidate macro-instructions. Our 
algorithm is not limited to macro-instructions with just 
one output, unlike approaches based on PBQP. 

• We introduce a set of metrics and cost parameters to 

 
Figure 1: Scheduling and binding of a DFG with: (a) Primitive 

instructions. (b) Mixture of primitive and macro instructions. Macro 

instruction K is scheduled on the macro FU K which is a pipelined 3-
input adder. 



estimate the gains expected by the generation of 
macro-instructions.  

• We discuss a systematic approach to pipeline macro 
functional units and optimize their implementation. 

The experimental evaluation proves the efficiency of our 
approach in significantly reducing the amount of multiplexers 
in the designs, and hence, reducing routing overhead and area. 
More importantly, benchmarks with notoriously demanding 
placement and routing requirements, such as the DVB-S2 
telecommunications decoder, were successfully placed and 
routed only after applying our proposed approach. On average, 
our proposed techniques achieved 12% area reduction for a 
series of benchmarks implemented on a Virtex-6 FPGA.  

Moreover, we have performed an extensive comparison 
between our methodology and a state of the art algorithm 
presented in [8] by Cong et al. Our methodology results to both 
reduced area (by 6%) and lower time to place and route the 
design (by 7%). These numbers are higher for larger designs 
that are difficult to implement (Section IV). 

The remainder of the paper is organized as follows: Section 
II introduces the grammar-based macro-instruction 
identification algorithm. Section III presents the macro-
instruction selection and implementation algorithms. In Section 
IV we discuss the experimental evaluation of the proposed 
approach. Section V outlines related work, followed by 
conclusions in Section VI. 

II. GRAMMAR GENERATION 

In this section we introduce a grammar generation 
algorithm for systematically discovering repetitive computation 
patterns inside a DFG, or equivalently identifying candidate 
sets of operations to be implemented as macro-instructions.  

A. Grammar Representation 

Fig. 2.a depicts a motivating example. A grammar 
representation consists of a set of statements called rules or 
non-terminals. Each rule is a sequence of symbols that contains 
other rules and/or data symbols called terminals. In Fig. 2.a, 
rule B includes both non-terminal A and terminals a and d. The 
original statement S can be restored by substituting each non-
terminal with its production, namely the right-hand side of the 
rule, until all non-terminals are eliminated.  

In this paper we extend grammar inductions to also 
represent DFGs. Fig. 2.b depicts a subgraph of a DFG 
represented as a compound statement S. A simple grammar can 
be deduced by introducing rule A. We treat each primitive 
instruction as a terminal symbol. A new concern when using 
grammar representations for DFGs is the operand order for 
non-commutative operations, such as subtraction or division. 
We use clock-wise numbering of inputs to state their order. In a 
DFG that consists merely of primitive instructions, each rule 
can be considered as a potential compound macro-instruction.  

A convenient property of grammar representations is their 
hierarchical structure, which inherently integrates multiple 
levels of granularity. This proves very handy when it comes to 
hardware implementation of computationally intensive 
algorithms. For example, assume the DFG subgraph S in Fig. 
2.b is part of a larger DFG, populated by multiple subgraphs of 
type S. In this case, S can function as a non-terminal in the 
larger DFG. Therefore, the synthesizer has the choice to 
implement either the macro-instruction A that represents a fine 
granularity computation, or the macro-instruction S which 
represents a coarser granularity computation. An FU that 
implements a macro-instruction with coarser granularity 
requires lower routing overhead because most interconnects 
tend to be within the FU, rather than across the FUs. By 
reducing inter-FU routing, final datapath implementation tends 
to suffer less from routing congestion and to require lower 
P&R overhead. However, a coarser granularity macro-
instruction like S is not necessarily fitter for implementation. 
This is, for example, the case when the implementation of S 
requires many resources and at the same time there are just a 
few occurrences of S in the program to exploit these resources. 
In section III.B we will introduce a systematic method for 
selecting between different granularity levels.  

B. Generation of Grammar-based DFG Representation 

The grammar generation algorithm traverses the DFG and 
discovers repetitive patterns by matching pairs of instructions. 
A pair of instructions b(a) denotes that the output of instruction 
a is an operand to instruction b as shown in Fig. 2.b. We call 
instruction b destination node and instruction a source node. 

The rules of a grammar generated according to Sequitur 
share two properties:  
(1) Digram uniqueness: A digram is a pair of adjacent 

symbols, each being a terminal or non-terminal e.g. aA in 
Fig. 2.a. Each digram should appear exactly once in the 
productions (right-hand side) of the grammar rules.  

(2) Rule utility: Each rule in the grammar should appear at 
least twice in the productions of other, higher-level rules. 
This property ensures that all rules are useful. 
In addition to the above constraints we introduce the 

following constraints, specifically for data flow graphs:  
(1)   Output ports number: The number of outputs of a 

compound statement described by a rule should not exceed 
an upper limit Nout. This constraint helps reduce the 
complexity of the selection process by reducing the 
number of potential patterns. 

(2)   Convexity: A rule is a representation of a convex subgraph 
in the DFG. A subgraph S is convex if there is no path from a 

node Su∈   to a node Sv∈ through a node Sw∉ . 

Convexity ensures that a selected rule can be implemented 
entirely within an MFU.  

(3)   Data computation instructions only: Load, store, and 
control instruction nodes are not considered for inclusion 
in the grammar rules.  
Fig. 3 shows the steps of the grammar generation algorithm 

using an example. The algorithm starts by enumerating the 
DFG nodes in a reverse topological order (Fig. 3.a). Given the 
sorted DFG, the algorithm selects the first node, n0 (destination 
node) in our example, and builds the template pairs for each 
operand of the node (n0(n2) and n0(n3)). If a template pair 
satisfies the output ports number and convexity tests, the 
algorithm searches for additional instances of the template in 
the DFG. The search returns a list of pairs of instructions 

 
 (a) 

 
(b) 

Figure 2: Grammar representation applied on (a) a sequence of data 
symbols, and (b) a data flow graph (DFG). 



matching the template pair. A matching instance should have 
the same operations as the template pair and, generally, the 
same order of operands. The order of operands is ignored in 
case the destination node is a commutative operation such as 
addition. From all the template pairs derived from n0, namely 
n0(n2) (Fig. 3.b) and n0(n3) (Fig. 3.c), we greedily choose to 
consider the template pair with the maximum number of 
instances for implementation as a macro-instruction. The 
experimental analysis proved that routing complexity and area 
reduction correlates closely with the number of rule instances. 
In Fig. 3.d we chose the template pair a(b) (corresponding to 
n0(n3)) which has 5 occurrences rather than the template pair 
a(a) (corresponding to n0(n2)) which appears only twice.  

When a template pair is chosen, the algorithm will update 
the grammar in one of two ways: 
(1) If the destination node in the pair is a terminal, i.e. a 

primitive instruction, the algorithm generates a new rule. 
In Fig. 3.d we create a new rule A for the pair a(b) because 
a is a primitive operation. 

(2) If the destination node in the pair is non-terminal (e.g. node 
A in Fig. 3.e), then; 
a.  If all its occurrences in the DFG have a matching 

pair (e.g. A(a) in Fig. 3.e), we extend the non-
terminal rule of the destination node. 

b. Otherwise, we create a new rule.  
In Fig 3.e, not all the occurrences of the destination node A 

have a matching pair A(a) (only 2 of the 5 occurrences of A do), 
so we create the new rule B. However, in Fig 3.g, all 
occurrences of the destination node B have a matching pair 
B(c), so we extend rule B to include c. 

After updating the grammar, the algorithm updates the 
destination node in each matching pair as follows: 
(1) Substitute the destination node of each matching pair by a 

non-terminal node. E.g. node a in the pair a(b) of Fig. 3.c 
becomes non-terminal node A in Fig. 3.d. 

(2) Add the source node in the pair (b in the pair a(b) of Fig. 
3.c) to the internal subgraph of the destination node. Each 
node marked as non-terminal has an internal subgraph 
which is a cut of the original DFG. In Fig 3.d, non-terminal 
node A corresponds to subgraph a(0, b(1, 2)).  

(3) Update the operands list of the newly created non-terminal 
node to include the operands of the source node in the pair, 
and empties the operands list of the source node.  
The process is repeated on the new state of the DFG, 

searching for templates (pairs of nodes) having the newly 

inserted non-terminal as destination. In Fig. 3.e, after merging 
terminal node a to non-terminal node A, the algorithm repeats 
the process of building template pairs and searching for 
matches using destination node A which now has two more 
operands: c and A, to node b. If the algorithm fails to find 
matching pairs having the newly inserted non-terminal as 
destination node, it continues with the next node in the sorted 
DFG list. The iterative process continues until there are no 
more nodes to consider as destination nodes. It should be noted 
that our approach is not limited to producing nodes with 1 
output, like existing techniques for code generation (PBQP). 

III. GRAMMAR-DRIVEN DATAPATH SYNTHESIS 

FLOW 

The hierarchical grammar representation of a DFG can be 
exploited in many practical problems, such as DFG 
compression. Since each FU in a datapath can be typically 
reused for multiple DFG operations, a multiplexer tree is 
needed at the input ports of each FU to select among a 
multitude of inputs. Multiplexer trees may cost more in terms 
of area than the FU itself, especially for simpler FUs. If all 
instances of a grammar rule are implemented as a macro 
functional unit (MFU), where the internal data flows are free of 
multiplexers, the area gain may be significant; furthermore, 
reducing routing complexity leads to reducing routing latency, 
and time it takes to place and route the design.  

Fig. 4 shows the complete grammar-driven datapath 
synthesis flow. For each input DFG we generate the datapath 
RTL that implements the DFG functionality. Given the original 
input DFG, the synthesis flow starts by slicing the DFG into 
one or more smaller subgraphs. Then, the grammar generation 
engine processes each DFG slice separately. A subset of the 
non-terminal rules is selected to generate macro-instructions. 
Given the selected set of rules, the algorithm will produce a 
new DFG, incorporating primitive and macro-instructions. 

A preliminary step before grammar generation in our tool 
is the slicing of the given DFG into smaller DFGs. In some 
cases, for example when the DFG expresses computation of an 
unrolled, data-parallel loop, the graph consists of multiple 

 
Figure 3: Motivational example showing the steps of the algorithm. In this case output ports number constraint is set to one (Nout = 1). The final 

generated grammar is depicted in (k). 

 
Figure 4: Grammar-based datapath synthesis flow. 



strongly connected subgraphs (slices). Different slices can be 
treated independently in grammar generation, scheduling and 
binding. For grammar generation, the search space for 
matching pairs is smaller, which speeds up grammar 
generation. Another important benefit is the implicit creation 
of isolated islands of resources (FUs, registers) for each DFG 
slice, making the task of the placement & routing much easier. 

A. Grammar Generation & Selection 

Following DFG slicing, the flow continues with the 
grammar generation algorithm described in Section II, which is 
applied independently on each slice. Hence, each DFG slice 
will end up with its own grammar representation. 

Grammar-driven data compression algorithms normally use 
all the grammar rules to compress a sequence of data symbols. 
In our case, only a subset of rules will be used to implement 
MFUs. The purpose of this step is to identify a subset of 
grammar rules that minimizes routing density and reduces total 
area. The greedy selection algorithm we introduce in this paper 
uses a fitness function to assign weights to each rule in the 
generated grammar. At each step, the rule with the highest 
fitness value is selected to be implemented as an MFU and all 
its instances are removed from the grammar. When a rule is 
selected, all grammar rules using this rule as a non-terminal in 
their productions are essentially also removed from the 
grammar and they are no longer considered for implementation 
as MFUs. Otherwise, multiple different MFUs would be 
generated, executing the same primitive operations. After each 
step, the fitness function updates the fitness of the remaining 
rules. The process is repeated until the grammar is empty.  

The fitness function (1) uses a set of metrics to estimate the 
gain from implementing rule i as an MFU:  

( )iiii MUXG+LGCG=W ∗  (1) 

The following paragraphs explain the parameters of (1). 
Coverage Gain (CG): The coverage gain for rule i is a 
normalized value of the total number of primitive instructions 
in the DFG covered by the specific rule. The metric is 
computed in (2). Higher coverage means fewer primitive FUs 
will be implemented individually, hence, smaller multiplexer 
trees. To compute a fair metric value, we compute the total 
number of primitive instructions that can be covered by a given 
rule, instead of relying only on the count of rule instances 
(occurrences) or the number of primitive instructions 
(operations) per rule instance.  
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The coverage gain factor functions as a multiplier for two 
metrics, LG and MUXG that correspond to area gains. The 
value of the coverage gain metric will change each time we 
select a rule to be implemented as an MFU. This happens 
because some rule instances are removed from the grammar if 
they appear as non-terminals in the production of a rule 
selected earlier. The maximum coverage value will also 
change, and hence, the normalized values of CG. 

Multiplexers Gain (MUXG): This metric quantifies area 
gains due to reduction of the number of multiplexers per 
instance of each rule. The metric is computed using (3). The 
numerator is the difference between the total number of inputs 
of all primitive FUs of an MFU (Σ#Operands) and the number 

of the MFU inputs (#RuleOperands). To normalize, we divide 
by “Σ#Operands”. 

( )
pRulesCountp

i

i

RuleOps

p=

p

RuleOps

p=

p

i

Ratio

Ratio
=MUXG

Operands

dsRuleOperanOperands

=Ratio

axm
0

0

0

≤≤

∑

∑ −
 (3) 

Based on formula (3), we observe that the value of MUXG 
tends to increase when the number of primitive instructions in a 
rule increases. In other words, larger rules will have higher 
multiplexer gain. However, the algorithm does not always 
favor larger rules over smaller ones. A smaller rule with lower 
multiplexers gain per instance may be associated with a much 
higher coverage gain, which makes it fitter for implementation.  

Logic Gain (LGi): This metric quantifies the potential for 
reduction of logic cells through packing of primitive 
instructions within an MFU (or equivalently a grammar rule). 
The metric is computed using equation (4). The numerator 
quantifies the efficacy of fusing the logic cells of all the 
primitive FUs of the MFU. LUTs in FPGAs have a limited 
number of inputs. The more the number of MFU inputs 
increases the more difficult it becomes to map its function on 
fewer LUTs, and therefore, we divide by the number of the 
MFU input signals (#RuleOperands) in equation (4). 

( )

( )pRulesCountp

i
i

RuleOps

=l

l

i

LogicGain

LogicGain
=LG

dsRuleOperan

A

=LogicGain

xam
0

0

1

≤≤

∑ −
 (4) 

The value of the parameter Al in (4) is normalized in the 
range [0, 1] and is characteristic for each primitive instruction 
type l. It quantifies the difficulty to fuse this instruction with 
additional ones, in the same set of logic cells. Al is dependent 
on the nature of the instruction in the FPGA architecture, and 
the synthesis, placement and routing toolchain. The following 
paragraphs present a brief explanation of the estimation of Al.  

Al Parameter Estimation: We developed a set of 
representative subgraphs, with various primitive instruction 
types and configurations, to be used as micro-benchmarks for 
systematically off-line estimation of Al on each target platform. 
Although the methodology is the same, the values of the 
parameters are FPGA-device specific. Al quantifies an 
estimation of the percentage of the implementation capacity of 
the LUT taken by the primitive instruction l. Similarly, if two 
primitive instructions l and l΄ are fused on the same LUT, the 
summation of the corresponding area estimation parameters Al 
and Al΄ provides a good estimation of the consumption of the 
LUT implementation capacity by both instructions. 

An initial estimate of Al is computed by finding how many 
primitive FUs of the same type l can be packed in one level of 
logic of the same LUTs. We perform synthesis, placement and 
routing on the given FU (or MFU) to determine the number of 
consumed LUTs. The process of adding more FUs of the same 
type continues, until the resulting subgraph requires more 
LUTs for its implementation. For example two adders can be 
packed in the same number of LUTs required for the 
implementation of one adder of the same bitwidth; if a third 
adder is added, it will occupy a different set of LUTs. 
Therefore, the initial estimate of Aadd takes the value 0.5. If 



packing a third adder on the same set of LUTs succeeded, the 
estimate would be 0.33. 

Given the initial estimates of parameters Al, the heuristic 
performs a refinement step which tries to reduce the error in 
the initial estimate. The second step refines the parameter Al 
for primitive operation of type l by computing how many 
primitive operations of type k, with Ak < Al, can be packed in 
the same LUTs already occupied by operation l.  

Rule Selection Example: Fig. 5 shows how we apply rule 
selection on the grammar of the example of Fig. 3. The left 
table of Fig. 5 contains the normalized metric parameters and 
the corresponding fitness for each rule according to (1). After 
selecting the rule with the maximum fitness (B in Fig. 3), we 
update the metric parameters, and normalize their values again. 
Note that after removing rule B from the grammar, we also 
removed two instances of rule A, which appears now in only 3 
instances. Rules A and C now have the same coverage since 
they both cover 6 instructions. After updating the metrics, rules 
A and C have both the same weight. Since rule C is using rule 
A, OrderRules subroutine prioritizes rule C over rule A, and 
hence the algorithm selects rule C for implementation and 
removes 2 more instances of the rule A. Since rule A now 
appears in only one instance, we can no longer consider it for 
MFU implementation, because of the rule utility constraint: 
rules must appear in the grammar with at least two instances. 

B. Macro Functional Unit Pipelining 

Once the set of rules have been selected for MFU 
implementation, we have to determine the pipeline depth of 
each MFU and therefore its latency.  

The algorithm uses a default pipelining scheme for 
inserting pipeline registers in MFU as a reference. The default 
scheme greedily adds a pipeline register after each primitive 
FU (Fig 6.a). In this reference pipeline scheme, the 
combinational path of a single primitive FU (4-bit XOR and 4-
bit ADD FUs in Fig 6.b) is considered as one level of logic. 
Hence, using the default pipelining scheme, only one level of 
logic exists between two successive pipeline registers. 

The algorithm traverses the MFU subgraph and removes a 
pipeline register if its removal does not increase the levels of 
logic cells between two other pipeline registers. For example, 
in Fig 6.a, pipeline register R1 will be removed if it does not 
increase the levels of logic between registers R0 and R2. In Fig 
6.c, the removal of register R1 allowed fusing the logic cells of 
the XOR FU with the logic cells of the ADD FU. The removal 
of R1 produces a new Boolean expression that may be 
implementable using one level of logic cells (LUTs). 

To decide if the removal of a pipeline register will increase 
the number of logic levels – in the form of LUTs – or not, the 
algorithm uses the same set of Al parameters used in (4) to 
compute the logic gain metric LGi. In general, if the summation 
of area estimation parameters Al in a DFG sub-path, is less than 
or equal to 1.0, we estimate that the corresponding primitive 

instructions can be fused and implemented on a single LUT, or 
equivalently, they require the same levels of logic as one 
primitive instruction. As a result, intermediate registers in the 
sub-path can be safely removed without affecting the timing 
characteristics of the circuit. 

C. Scheduling and Implementation 

Once a set of rules is selected for MFU implementation, 
each instance of a rule is converted to a macro instruction of 
the specific type and the resulting DFG is scheduled using 
modulo scheduling. A macro instruction is scheduled only 
when all input data are available. We use Swing Modulo 
Scheduling (SMS) [12] to generate a schedule of the DFG 
nodes on the allocated resources. The scheduler identifies an 
iterative pattern of instructions and their assignment to 
functional units (FUs), so that each iteration can be initiated 
before the previous ones terminate. SMS creates software 
pipelines under the criterion of minimizing the Initiation 
Interval (II). The latter is the main factor affecting 
computational throughput. The value of II represents the rate at 
which we initiate successive loop iterations. By increasing the 
amount of allocated resources we lower the value of II, unless a 
recurrence circuit in the loop prevents that. For II = 1, a 
separate FU is allocated per instruction. Target IIs > 1 are 
particularly useful in certain domains, where designs are 
subject to strict resource constraints. 

IV. EXPERIMENTAL EVALUATION 

A. Methodology 

The tool flow of Fig. 4 is used to produce macro-
instructions, and the synthesis engine performs resource 
allocation, modulo scheduling and binding on the new DFGs. 
Finally, the tool generates synthesizable Verilog of the DFG 
datapath. We used Xilinx ISE 12.4 for synthesis, placement & 
routing, targeting the Virtex-6 LX760 FPGA. Our benchmark 
base consists of the 8 kernels outlined in Table I. The 
benchmarks are computation-intensive and their DFG sizes 
vary from tens up to thousands of primitive instructions.  

CG MUXG LG W

A 1 0.5 0.95 1.45

B 0.8 1 1 1.6

C 0.6 0.67 0.72 0.83

CG MUXG LG W

A 1 0.75 1 1.75

C 1 1 0.75 1.75

 
Figure 5: The selection process of rules for the grammar of Fig 3. The 

selected set of rules is: {B, C}. Parameter Al is 0.2 for logic operations, 

0.5 for add/sub, and 1.0 for multiplications, divisions and FP operations 
in a Virtex-6 architecture. These values are higher for the older Virtex-4 

architecture. 

   

(a) (b) (c) 
Figure 6: (a) Reference pipeline scheme used as template for the 
pipelining algorithm. (b) Logic level of pipelined Xor and Add operators. 

(c) Fused Xor and Add operations in a single logic level.  

TABLE I: APPLICATIONS USED FOR EVALUATION  

Application Description 

CMC AVS Video Decoder Chroma motion interpolation  

Luma AVS Video Decoder Luma motion interpolation  

DCT H.264 Video Encoder 8x8 Integer DCT  

SEAL Seal cryptography kernel  

CN Forward Error Correction (FEC) decoder CheckNode Kernel 

BN Forward Error Correction (FEC) decoder BitNode Kernel  

Deblocking AVS Video Decoder Deblocking Filter 

LUD LU Decomposition Perimeter (Floating Point) 



To explore the efficacy of the proposed grammar driven 
synthesis approach, we experimented with a variety of datapath 
configurations. A datapath configuration depends on the 
number, type and bitwidth of allocated functional units, and 
memory I/O bandwidth. Each configuration is characterized by 
the Initiation Interval (II), as explained in Section III.C. We 
experimented with three configurations: CA targeting II = 1 in 
the original case, CB with II = 8, and CC with II = 16. The only 
exception was SEAL, which contains complex cross-iteration 
loop dependences that create recurrence scheduling constraints. 
This constraint limits modulo scheduling ability to a minimum 
II value of 60 cycles. The value of II relates with the size of the 
multiplexer tree at FU input ports as well. Schedules with 

higher II result into larger multiplexer trees due to FU reuse. 

B. Grammar Representation Results 

Table II summarizes some low-level characteristics of the 
DFGs after grammar generation and rule selection. Column 
“#Rules” lists the grammar size in numbers of rules generated 
for each application. Column “#Used Rules” lists the number of 
selected rules from each grammar to be implemented as MFUs 
in the final representation of the DFG. Column “Rule Size” 
shows the range of number of instructions per rule for the 
selected rules subset. “#Instance per Rule” shows the average 
number of instances per rule. Columns “#Insts” and “#Insts(g)” 
list the DFG size before and after grammar-based 
representation, respectively. Finally, “Reduction” shows the 
percentage of reduction in the number of primitive instructions. 

Unlike pattern recognition and enumeration approaches, the 
generated set of subgraphs (i.e. rules) is much smaller in both 
the total number of subgraphs and subgraph size, yet it covers 
40% – 53% of the program DFG. 

C. FPGA Placement & Routing Results 

Fig. 7 shows the area results for all 8 benchmarks, for the 
original and the optimized cases. On average, the grammar-
based approach achieved very good results even for kernels 
with few instructions, delivering an average 12% area 
reduction in terms of number of slices and number of flip-flops 
(FFs are not shown in Fig. 7 for brevity). Reduced DFG size 
with grammar-based compression required around 16% less 
time on average to schedule and synthesize, which correlates 
with the reduction in DFG size (Fig. 8). A noticeable result 
appears for CN and BN kernels. These two kernels are very 
large (approximately 4000 and 3000 nodes, respectively) and 
are notoriously difficult to place and route. Without the 
grammar-driven synthesis approach, the vendor-provided 
synthesis tool failed to successfully finish placement and 

routing even in large FPGAs such as LX760. After the 
grammar-driven synthesis optimizations the tool generated a 
fully placed and routed design in less than 3 hours (Fig. 8).  

To gain a better understanding of the effects of our 
methodology on lower-level FPGA components, we decided to 
take a closer look at the type and number of multiplexers, since 
this is one of the main causes of routing congestion. We 
considered the DCT benchmark for CB configuration, for which 
our approach reduces number of slices by 32%. After applying 
our methodology the number of MUXF7 components, used to 
implement 8:1 (or wider) multiplexers in Virtex-6, dropped 
from 686 to 164 (4.18x), due to the reduction of the number of 
input multiplexers in each FU. On the other hand, the number 
of MUXCY components used in carry-propagation paths 
increased from 983 to 1605 (1.63x). By combining multiple 
operations (e.g. additions) in MFUs, we effectively increase the 
number of fast carry logic paths in the FPGA. 

Xilinx toolset also instantiates DSP hard blocks to 
implement multiplications and in some cases, the number of 
DSP blocks in the optimized RTL increases. For example, the 
Luma benchmark requires 9 DSP blocks for CB configuration in 
the optimized RTL up from 6 blocks in the unoptimized RTL. 
Such increases have marginal effect on the routability and 
performance of the final design, since it is always the LUTs 
and flip-flops that dominate area requirements and drive 
routing congestion. 

TABLE II: GRAMMAR BASED DFG REPRESENTATION RESULTS. 

“INSTS(G)” REFERS TO THE NUMBER OF DFG NODES AFTER 
GRAMMAR BASED REPRESENTATION. 

App. #Rules 
#Selected 

Rules 

Rule 

Size 

#Instances 

per Rule 
#Insts #Insts(g) Reduct. 

CMC 6 3 [2-9] 7 136 86 37% 

LUMA 18 11 [2-4] 6 299 219 27% 

DCT 10 8 [2-3] 9 307 197 36% 

SEAL 8 5 [2-3] 6 143 107 25% 

CN 18 7 [2-5] 127 3962 2500 37% 

BN 8 5 [2-7] 64 2917 1677 43% 

Deblocking 9 5 [2-4] 3 176 150 15% 

LUD 1 1 [2] 2 20 18 10% 

 

Figure 7: Number of slices (lower is better) for original and optimized 

configurations (with grammar-driven datapath synthesis). In CN and BN 

benchmarks the missing configurations for the original case are due to the 
fact that the standard manufacturer toolchain failed to fully place & route 

the generated RTL before applying our compression technique. The last bar 

shows the number of slices according to [8]. The numbers above the bars 
represent the schedule latency (in clock cycles) of a single loop iteration. 



Grammar-based designs typically involve more FU types 
than original designs in their datapath, due to the introduction 
of MFUs. The additional MFU types impose an area overhead. 
The issue manifests more clearly in the CC configurations, 
where few FU instances (normally one or two) are allocated for 
each FU type. For DCT and Luma, our algorithm achieves 32% 
and 17% reduction in area respectively for the CB 
configuration. For the CC configuration area gains are limited 
to 20% and 13%. These two kernels use 8 and 11 MFU types 
respectively in their datapath. While using MFUs reduces 
multiplexer area, the area overhead from the large number of 
used rules limits the overall area reduction for configuration 
CC. On the other hand, CMC and SEAL kernels use only 3 and 
5 rules respectively, with limited area overhead, hence 
configuration CC outperforms configuration CB. Note also that 
MFU area overhead can be reduced whenever the pipeline 
algorithm identifies opportunities to produce compact and 
lightweight MFUs, which is the case for CMC and SEAL. On 
the contrary, MFUs in DCT and Luma datapaths consist of 
heavyweight primitive FUs, that could not be effectively fused.  

DFGs characterized by patterns with a very low number of 
occurrences and low DFG coverage are also potentially 
susceptible to area overheads from the introduction of MFUs. 
In this case, the combination of MFUs overhead with the 
limited multiplexer reduction might produce designs with very 
little or no area reduction, which is the case for LUD and 
Deblocking kernels. However, during our experimental 
evaluation with a variety of kernels we observed that, even for 
DFGs with a small number of pattern repetitions (see Table II, 
#Instances per Rule), area reductions are achieved because 
these repetitions cover 45% to 53% of the DFG. Therefore, 
instruction clustering led to a significant reduction in the area 
spent for multiplexers, overweighing the MFUs area overhead. 

It appears from the experimental evaluation that the 
grammar-based approach sometimes performs poorly at II = 1. 
This is expected, because in this case there are no multiplexers 
to optimize out. For some benchmarks (DCT and Luma) the 
consumed area is slightly more than that of the original 
configurations. For these benchmarks, the pipeline algorithm 
produced fully pipelined MFUs, because they contained 
heavyweight primitive FUs that could not be fused with others. 
Moreover, using macro-instructions in those benchmarks 
increased variable lifetimes, which led to allocating more 
registers. This is, for example, the case for the BN kernel 
(configuration CA). The version produced after instruction 
clustering requires more area than the original one, despite the 

fact that the pipelining algorithm efficiently produced more 
compact MFUs. Most of the generated MFUs in BN kernel are 
not flat. They have latencies between 3 and 4 cycles (after 
being optimized down from 7 cycles by the pipelining 
algorithm). The large amount of MFUs with such latencies 
imposed an overhead on the scheduler, leading to increased 
variable lifetimes and registers requirements. 

 On the other hand, the proposed approach worked well 
even at II = 1 for benchmarks such as CMC, Deblocking and 
CN, in which the logic gain for generated macro-instructions 
was significant. The MFUs produced were compact and 
lightweight, which subsequently led to the area reduction. 
Compact MFUs generated after the pipelining algorithm have a 
positive impact on variables lifetime at II = 1, leading to 
reductions in registers requirements. Therefore, at II = 1, area 
reductions are obtained mainly by compressing and optimizing 
the generated MFUs. 

We have implemented a state of the art algorithm described 
by Cong et al. [8] and have integrated it in our synthesis flow 
to compare the two methodologies (Fig. 7, third set of bars). 
Our approach produces designs with smaller number of slices 
than [8] by 6%, on average, and over 9% for higher II values. 
Our algorithm performs better than [8], especially in BN, CN, 
Luma, and SEAL kernels because we use fewer patterns to 
represent the DFG, despite covering nearly the same number of 
instructions. For example, we select 5 and 7 rules for BN and 
CN, while [8] selects 8 and 11 respectively. Both algorithms 
cover approximately the same number of primitive FUs (43% 
and 37% for BN and CN, respectively). In CMC, both 
algorithms used the same patterns to implement the datapath, 
however our MFU packing algorithm produces more compact 
MFUs with smaller area. For DCT, LUD and Deblocking 
kernels, our algorithm and Cong’s approach produced almost 
the same patterns which were also implemented in a similar 
manner, hence the area reduction by both approaches is similar.  

We should note that our approach performs better than [8] 
at higher II. This correlates with the fact that multiplexers 
reduction increases in proportion to II, meaning that our 
approach is more successful in reducing the number of 
multiplexers. 

Fig. 8 shows the synthesis, placement & routing (SPR) 
speedup achieved on the standard Xilinx toolset for the 
optimized versus the original DFGs. SPR for grammar-based 
designs is on average faster than for the original designs, 
achieving an average speedup 1.16x for CC configuration 
without taking into account CN and BN kernels. Original CN 
and BN kernels in CB and CC configurations were processed for 
over 12 hours before eventually failing to produce a bitstream 
due to routing congestion. The DFGs produced for the same 
benchmarks and configurations by the grammar-based 
approach succeeded in less than 3 hours. CN kernel achieves 
the highest speedup (2.2x) among the other benchmarks, 
mainly because of the significant area reduction attained by the 
optimized design. Our algorithm also resulted into faster SPR 
time over [8] by 7% on average for all configurations. In other 
words, our algorithm creates designs that occupy less area at a 
smaller amount of SPR overhead compared to [8]. 

The achieved clock frequency for optimized configurations 
has a deviation between +8% (frequency increase) to -1.2% 
from the original configurations with an average +1.6% 
(excluding benchmarks in which P&R on the original failed).  

The proposed grammar-based algorithm is very fast; in all 
cases the grammar generation and rules selection took less than 
a second to finish and produce a new DFG. 

 
Figure 8: Synthesis, Placement & Routing (SPR) speedup of designs 

produced by applying our algorithm and the algorithm described in 

[8] with respect to unoptimized designs. CB and CC bars in BN and 
CN kernels are missing because the original designs failed to finish 

placement and routing successfully after 12 hours of runtime, while 

optimized designs succeeded within 3 hours. 



V. RELATED WORK 

Extracting regular computation patterns has been the focus 
of prior research in behavioral datapath synthesis [1-9]. In [10] 
the authors provide an extensive overview of the research in 
instruction-set extension. Regularity extraction has also been 
used for custom instruction generation [5,7,8]. The proposed 
approaches can be categorized based on how they solve the two 
sub-problems: candidate subgraph generation and selection.  

Candidate subgraph generation. Early work used 
variations of enumeration techniques augmented with a set of 
constraints or a guide function to prune the search space [1,7]. 
Another set of early works used pattern recognition techniques 
to extract computations regularities in a DFG. A set of works 
[5,8,9] uses user-defined patterns libraries and patterns 
matching techniques to improve the quality of logical synthesis 
at the behavioral level. 

Cong et al. proposed a pattern-recognition based approach 
for FPGA resources reduction [8], in which – contrary to our 
approach – pattern instances do not need to be totally identical. 
Therefore, MFUs can have extra multiplexers on intra-FU 
interconnects, increasing the area overhead of MFUs. 
Candidate subgraph selection. All aforementioned papers 
approached the candidate subgraph selection problem in a 
similar manner: a cost function and a set of metrics have been 
used to weigh the performance gain and the feasibility of a 
candidate subgraph. In previous research that targeted 
application specific processors and instructions set extensions 
[1,2,7], where the concern is increasing processors 
performance, metrics that estimate latency, area, and 
inputs/outputs number have be used. 

Cong [8] used metrics that estimate multiplexers cost 
reduction and latency. The latency metric gives higher priority 
to flat subgraphs. In our case latency is not the primary 
concern. The critical path latency is actually effectively 
reduced during MFU pipelining. However, using the flatness 
metric of Cong could reduce the variables lifetime overhead 
which appears in the BN kernel at configuration CA (Fig. 7). 

Prior work addressed the problem of multiplexer size 
reduction. The majority of works are based on resources 
binding techniques in datapath synthesis [4,11]. The drawback 
of previous binding algorithms is that they fail to exploit 
regular patterns and rely solely on iterative algorithms to 
minimize the multiplexers overhead during resources binding. 

VI. CONCLUSION 

In this paper we introduced a grammar-based datapath 
synthesis methodology. Our approach targets the reduction of 
the routing complexity and overhead in FPGA designs. The 
core of the methodology is the production of a hierarchical 
grammar representation of a DFG. The rules of the grammar 
correspond to cuts of the DFG which can be considered as 
candidate macro-instructions. The algorithm performs 
grammar generation, rules selection and implementation with 
very small computational complexity. Furthermore, we 
presented a simple yet systematic area estimation technique, 
which can be applied to characterize each target FPGA 
architecture and toolchain. The results of the area estimation 
are used to both guide the rules selection phase, and drive the 
insertion of pipeline registers in the produced macro FUs.  

Experiments showed the efficiency of the proposed 
approach in reducing routing complexity and hence reducing 
area. Moreover, the pipelining algorithm typically produced 
schedules with smaller latency and no penalty on clock 

frequency. Most importantly the grammar-driven optimization 
allowed successful placement and routing on complex designs 
that were not deemed implementable before. 
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