
A Grammar Induction Method for Clustering of Operations

in Complex FPGA Designs

Muhsen Owaida, Christos D. Antonopoulos, Nikolaos Bellas
Department of Electrical and Computer Engineering,

University of Thessaly, Volos, Greece

Email: {mowaida, cda, nbellas}@inf.uth.gr

Abstract—In large-scale datapaths, complex interconnection

requirements limit resource utilization and often dominate

critical path delay. A variety of scheduling and binding

algorithms have been proposed to reduce routing

requirements by clustering frequently-used set of operations

to avoid longer, inter-operational interconnects. In this paper

we introduce a grammar induction approach for datapath

synthesis. The proposed approach deals with the problem of

routing using information at a higher level of abstraction,

even before resource scheduling and binding. It is applied on

a given data flow graph (DFG) and builds a compact form of

DFG by identifying and exploiting repetitive operations

patterns with one or more outputs. Fully placed and routed

circuits were successfully generated for complex designs that

failed to be placed and routed by the standard manufacturer

toolchain without applying our method. Moreover, placement

and routing time was accelerated by 16% on average. Our

grammar-based approach achieved 12% reduction in area on

average, mostly as a result of reducing multiplexer sizes and

the number of flip-flops, without noticeable adverse effect on

clock frequency. Our comparison with a state of the art

algorithm described in [8] shows that our approach

outperforms it in both reduction in FPGA area and time to

place and route the design.

Keywords-Automatic synthesis; FPGAs; Grammar-based

compression; Routing optimizations.

I. INTRODUCTION

One of the most challenging tasks of FPGA design is
achieving fully routed circuits, especially in datapath-
dominated designs. Routing resources, in the form of
multiplexers and interconnects can dominate both the area and
the signal delay for the implementation of computationally
intensive algorithms. Moreover, placement and routing (P&R)
in modern FPGAs is a very computationally intensive process,
potentially taking hours or days, even with the use of state-of-
the-art routing algorithms.

Given the routing complexity for large designs, the pressure
is growing for techniques that address the placement and
routing problem at a higher abstraction level. In a typical high
level synthesis approach, the tasks of resource allocation,
scheduling and binding are applied on a set of primitive
operations such as basic arithmetic and logic operations. The
cost of routing resources per primitive functional unit is
increasing rapidly in modern FPGAs. For example, the area
cost of a 32-bit adder with a 4-input multiplexer on each input
port is dominated by multiplexers (67% of the FPGA slices).

 By clustering primitive operations (such as additions,
shifts, bit selects, etc.) into macro-instructions, and
implementing those as Macro FUs (MFUs), we can effectively
reduce the amount of interconnect per operation. Generation of

application specific macro-instructions is a common practice
among instruction-set extensions designers [1, 2, 3, 7]. Such
macro-instructions can substitute a set of primitive operations
and consume fewer resources. Regular computation patterns
that appear repetitively in a program DFG are strong candidates
to be implemented as macro-instructions. As an example,
macro-instruction K in Fig. 1.b, which consists of two
successive additions, results to a more compact and efficient
circuit, requiring fewer resources (i.e. multiplexers) than the
individual primitive ADD operations. A macro-instruction can
be designed to optimize a set of different criteria, such as
silicon real-estate or latency, compared with the set of
corresponding primitive operations.

The generation of application specific macro-instructions is
a two steps process: a) candidate instructions identification,
after a space exploration of the application DFG and b)
candidate instructions selection, based on a number of
optimality criteria, like latency and area.

In this work we propose the use of a grammar-induction
approach for macro-instruction generation and selection. Our
target is to exploit the characteristics of macro-instructions,
which are in turn implemented as MFUs to reduce datapath
complexity, and hence, reduce routing complexity and improve
performance. Grammar induction is an established technique
used in string and tree compression algorithms [13]. It is a very
efficient approach to extract repetitive patterns from a data
sequence and to create hierarchical models of such patterns that
can be readily understood, analyzed and applied in other
domains. In this paper we extend a grammar induction
technique called Sequitur [13], to identify and generate a set of
candidate macro-instructions. Our generated grammar has a
regular hierarchal structure with few non-terminals, each
serving as a potential macro-instruction.

The contributions of our work are the following:

• We introduce an efficient and simple grammar-based
technique to identify highly repetitive computational
patterns in a DFG. The hierarchal structure of the
grammar resembles a multi-granularity computational
representation of candidate macro-instructions. Our
algorithm is not limited to macro-instructions with just
one output, unlike approaches based on PBQP.

• We introduce a set of metrics and cost parameters to

Figure 1: Scheduling and binding of a DFG with: (a) Primitive

instructions. (b) Mixture of primitive and macro instructions. Macro

instruction K is scheduled on the macro FU K which is a pipelined 3-
input adder.

estimate the gains expected by the generation of
macro-instructions.

• We discuss a systematic approach to pipeline macro
functional units and optimize their implementation.

The experimental evaluation proves the efficiency of our
approach in significantly reducing the amount of multiplexers
in the designs, and hence, reducing routing overhead and area.
More importantly, benchmarks with notoriously demanding
placement and routing requirements, such as the DVB-S2
telecommunications decoder, were successfully placed and
routed only after applying our proposed approach. On average,
our proposed techniques achieved 12% area reduction for a
series of benchmarks implemented on a Virtex-6 FPGA.

Moreover, we have performed an extensive comparison
between our methodology and a state of the art algorithm
presented in [8] by Cong et al. Our methodology results to both
reduced area (by 6%) and lower time to place and route the
design (by 7%). These numbers are higher for larger designs
that are difficult to implement (Section IV).

The remainder of the paper is organized as follows: Section
II introduces the grammar-based macro-instruction
identification algorithm. Section III presents the macro-
instruction selection and implementation algorithms. In Section
IV we discuss the experimental evaluation of the proposed
approach. Section V outlines related work, followed by
conclusions in Section VI.

II. GRAMMAR GENERATION

In this section we introduce a grammar generation
algorithm for systematically discovering repetitive computation
patterns inside a DFG, or equivalently identifying candidate
sets of operations to be implemented as macro-instructions.

A. Grammar Representation

Fig. 2.a depicts a motivating example. A grammar
representation consists of a set of statements called rules or
non-terminals. Each rule is a sequence of symbols that contains
other rules and/or data symbols called terminals. In Fig. 2.a,
rule B includes both non-terminal A and terminals a and d. The
original statement S can be restored by substituting each non-
terminal with its production, namely the right-hand side of the
rule, until all non-terminals are eliminated.

In this paper we extend grammar inductions to also
represent DFGs. Fig. 2.b depicts a subgraph of a DFG
represented as a compound statement S. A simple grammar can
be deduced by introducing rule A. We treat each primitive
instruction as a terminal symbol. A new concern when using
grammar representations for DFGs is the operand order for
non-commutative operations, such as subtraction or division.
We use clock-wise numbering of inputs to state their order. In a
DFG that consists merely of primitive instructions, each rule
can be considered as a potential compound macro-instruction.

A convenient property of grammar representations is their
hierarchical structure, which inherently integrates multiple
levels of granularity. This proves very handy when it comes to
hardware implementation of computationally intensive
algorithms. For example, assume the DFG subgraph S in Fig.
2.b is part of a larger DFG, populated by multiple subgraphs of
type S. In this case, S can function as a non-terminal in the
larger DFG. Therefore, the synthesizer has the choice to
implement either the macro-instruction A that represents a fine
granularity computation, or the macro-instruction S which
represents a coarser granularity computation. An FU that
implements a macro-instruction with coarser granularity
requires lower routing overhead because most interconnects
tend to be within the FU, rather than across the FUs. By
reducing inter-FU routing, final datapath implementation tends
to suffer less from routing congestion and to require lower
P&R overhead. However, a coarser granularity macro-
instruction like S is not necessarily fitter for implementation.
This is, for example, the case when the implementation of S
requires many resources and at the same time there are just a
few occurrences of S in the program to exploit these resources.
In section III.B we will introduce a systematic method for
selecting between different granularity levels.

B. Generation of Grammar-based DFG Representation

The grammar generation algorithm traverses the DFG and
discovers repetitive patterns by matching pairs of instructions.
A pair of instructions b(a) denotes that the output of instruction
a is an operand to instruction b as shown in Fig. 2.b. We call
instruction b destination node and instruction a source node.

The rules of a grammar generated according to Sequitur
share two properties:
(1) Digram uniqueness: A digram is a pair of adjacent

symbols, each being a terminal or non-terminal e.g. aA in
Fig. 2.a. Each digram should appear exactly once in the
productions (right-hand side) of the grammar rules.

(2) Rule utility: Each rule in the grammar should appear at
least twice in the productions of other, higher-level rules.
This property ensures that all rules are useful.
In addition to the above constraints we introduce the

following constraints, specifically for data flow graphs:
(1) Output ports number: The number of outputs of a

compound statement described by a rule should not exceed
an upper limit Nout. This constraint helps reduce the
complexity of the selection process by reducing the
number of potential patterns.

(2) Convexity: A rule is a representation of a convex subgraph
in the DFG. A subgraph S is convex if there is no path from a

node Su∈ to a node Sv∈ through a node Sw∉ .

Convexity ensures that a selected rule can be implemented
entirely within an MFU.

(3) Data computation instructions only: Load, store, and
control instruction nodes are not considered for inclusion
in the grammar rules.
Fig. 3 shows the steps of the grammar generation algorithm

using an example. The algorithm starts by enumerating the
DFG nodes in a reverse topological order (Fig. 3.a). Given the
sorted DFG, the algorithm selects the first node, n0 (destination
node) in our example, and builds the template pairs for each
operand of the node (n0(n2) and n0(n3)). If a template pair
satisfies the output ports number and convexity tests, the
algorithm searches for additional instances of the template in
the DFG. The search returns a list of pairs of instructions

 (a)

(b)

Figure 2: Grammar representation applied on (a) a sequence of data
symbols, and (b) a data flow graph (DFG).

matching the template pair. A matching instance should have
the same operations as the template pair and, generally, the
same order of operands. The order of operands is ignored in
case the destination node is a commutative operation such as
addition. From all the template pairs derived from n0, namely
n0(n2) (Fig. 3.b) and n0(n3) (Fig. 3.c), we greedily choose to
consider the template pair with the maximum number of
instances for implementation as a macro-instruction. The
experimental analysis proved that routing complexity and area
reduction correlates closely with the number of rule instances.
In Fig. 3.d we chose the template pair a(b) (corresponding to
n0(n3)) which has 5 occurrences rather than the template pair
a(a) (corresponding to n0(n2)) which appears only twice.

When a template pair is chosen, the algorithm will update
the grammar in one of two ways:
(1) If the destination node in the pair is a terminal, i.e. a

primitive instruction, the algorithm generates a new rule.
In Fig. 3.d we create a new rule A for the pair a(b) because
a is a primitive operation.

(2) If the destination node in the pair is non-terminal (e.g. node
A in Fig. 3.e), then;
a. If all its occurrences in the DFG have a matching

pair (e.g. A(a) in Fig. 3.e), we extend the non-
terminal rule of the destination node.

b. Otherwise, we create a new rule.
In Fig 3.e, not all the occurrences of the destination node A

have a matching pair A(a) (only 2 of the 5 occurrences of A do),
so we create the new rule B. However, in Fig 3.g, all
occurrences of the destination node B have a matching pair
B(c), so we extend rule B to include c.

After updating the grammar, the algorithm updates the
destination node in each matching pair as follows:
(1) Substitute the destination node of each matching pair by a

non-terminal node. E.g. node a in the pair a(b) of Fig. 3.c
becomes non-terminal node A in Fig. 3.d.

(2) Add the source node in the pair (b in the pair a(b) of Fig.
3.c) to the internal subgraph of the destination node. Each
node marked as non-terminal has an internal subgraph
which is a cut of the original DFG. In Fig 3.d, non-terminal
node A corresponds to subgraph a(0, b(1, 2)).

(3) Update the operands list of the newly created non-terminal
node to include the operands of the source node in the pair,
and empties the operands list of the source node.
The process is repeated on the new state of the DFG,

searching for templates (pairs of nodes) having the newly

inserted non-terminal as destination. In Fig. 3.e, after merging
terminal node a to non-terminal node A, the algorithm repeats
the process of building template pairs and searching for
matches using destination node A which now has two more
operands: c and A, to node b. If the algorithm fails to find
matching pairs having the newly inserted non-terminal as
destination node, it continues with the next node in the sorted
DFG list. The iterative process continues until there are no
more nodes to consider as destination nodes. It should be noted
that our approach is not limited to producing nodes with 1
output, like existing techniques for code generation (PBQP).

III. GRAMMAR-DRIVEN DATAPATH SYNTHESIS

FLOW

The hierarchical grammar representation of a DFG can be
exploited in many practical problems, such as DFG
compression. Since each FU in a datapath can be typically
reused for multiple DFG operations, a multiplexer tree is
needed at the input ports of each FU to select among a
multitude of inputs. Multiplexer trees may cost more in terms
of area than the FU itself, especially for simpler FUs. If all
instances of a grammar rule are implemented as a macro
functional unit (MFU), where the internal data flows are free of
multiplexers, the area gain may be significant; furthermore,
reducing routing complexity leads to reducing routing latency,
and time it takes to place and route the design.

Fig. 4 shows the complete grammar-driven datapath
synthesis flow. For each input DFG we generate the datapath
RTL that implements the DFG functionality. Given the original
input DFG, the synthesis flow starts by slicing the DFG into
one or more smaller subgraphs. Then, the grammar generation
engine processes each DFG slice separately. A subset of the
non-terminal rules is selected to generate macro-instructions.
Given the selected set of rules, the algorithm will produce a
new DFG, incorporating primitive and macro-instructions.

A preliminary step before grammar generation in our tool
is the slicing of the given DFG into smaller DFGs. In some
cases, for example when the DFG expresses computation of an
unrolled, data-parallel loop, the graph consists of multiple

Figure 3: Motivational example showing the steps of the algorithm. In this case output ports number constraint is set to one (Nout = 1). The final

generated grammar is depicted in (k).

Figure 4: Grammar-based datapath synthesis flow.

strongly connected subgraphs (slices). Different slices can be
treated independently in grammar generation, scheduling and
binding. For grammar generation, the search space for
matching pairs is smaller, which speeds up grammar
generation. Another important benefit is the implicit creation
of isolated islands of resources (FUs, registers) for each DFG
slice, making the task of the placement & routing much easier.

A. Grammar Generation & Selection

Following DFG slicing, the flow continues with the
grammar generation algorithm described in Section II, which is
applied independently on each slice. Hence, each DFG slice
will end up with its own grammar representation.

Grammar-driven data compression algorithms normally use
all the grammar rules to compress a sequence of data symbols.
In our case, only a subset of rules will be used to implement
MFUs. The purpose of this step is to identify a subset of
grammar rules that minimizes routing density and reduces total
area. The greedy selection algorithm we introduce in this paper
uses a fitness function to assign weights to each rule in the
generated grammar. At each step, the rule with the highest
fitness value is selected to be implemented as an MFU and all
its instances are removed from the grammar. When a rule is
selected, all grammar rules using this rule as a non-terminal in
their productions are essentially also removed from the
grammar and they are no longer considered for implementation
as MFUs. Otherwise, multiple different MFUs would be
generated, executing the same primitive operations. After each
step, the fitness function updates the fitness of the remaining
rules. The process is repeated until the grammar is empty.

The fitness function (1) uses a set of metrics to estimate the
gain from implementing rule i as an MFU:

()iiii MUXG+LGCG=W ∗ (1)

The following paragraphs explain the parameters of (1).
Coverage Gain (CG): The coverage gain for rule i is a
normalized value of the total number of primitive instructions
in the DFG covered by the specific rule. The metric is
computed in (2). Higher coverage means fewer primitive FUs
will be implemented individually, hence, smaller multiplexer
trees. To compute a fair metric value, we compute the total
number of primitive instructions that can be covered by a given
rule, instead of relying only on the count of rule instances
(occurrences) or the number of primitive instructions
(operations) per rule instance.

()

()iRulesCounti

i
i

iii

Coverage

Coverage
=CG

,OperationssOccurrence=Coverage

axm
0

*#

≤≤

 (2)

The coverage gain factor functions as a multiplier for two
metrics, LG and MUXG that correspond to area gains. The
value of the coverage gain metric will change each time we
select a rule to be implemented as an MFU. This happens
because some rule instances are removed from the grammar if
they appear as non-terminals in the production of a rule
selected earlier. The maximum coverage value will also
change, and hence, the normalized values of CG.

Multiplexers Gain (MUXG): This metric quantifies area
gains due to reduction of the number of multiplexers per
instance of each rule. The metric is computed using (3). The
numerator is the difference between the total number of inputs
of all primitive FUs of an MFU (Σ#Operands) and the number

of the MFU inputs (#RuleOperands). To normalize, we divide
by “Σ#Operands”.

()
pRulesCountp

i

i

RuleOps

p=

p

RuleOps

p=

p

i

Ratio

Ratio
=MUXG

Operands

dsRuleOperanOperands

=Ratio

axm
0

0

0

≤≤

∑

∑ −
 (3)

Based on formula (3), we observe that the value of MUXG
tends to increase when the number of primitive instructions in a
rule increases. In other words, larger rules will have higher
multiplexer gain. However, the algorithm does not always
favor larger rules over smaller ones. A smaller rule with lower
multiplexers gain per instance may be associated with a much
higher coverage gain, which makes it fitter for implementation.

Logic Gain (LGi): This metric quantifies the potential for
reduction of logic cells through packing of primitive
instructions within an MFU (or equivalently a grammar rule).
The metric is computed using equation (4). The numerator
quantifies the efficacy of fusing the logic cells of all the
primitive FUs of the MFU. LUTs in FPGAs have a limited
number of inputs. The more the number of MFU inputs
increases the more difficult it becomes to map its function on
fewer LUTs, and therefore, we divide by the number of the
MFU input signals (#RuleOperands) in equation (4).

()

()pRulesCountp

i
i

RuleOps

=l

l

i

LogicGain

LogicGain
=LG

dsRuleOperan

A

=LogicGain

xam
0

0

1

≤≤

∑ −
 (4)

The value of the parameter Al in (4) is normalized in the
range [0, 1] and is characteristic for each primitive instruction
type l. It quantifies the difficulty to fuse this instruction with
additional ones, in the same set of logic cells. Al is dependent
on the nature of the instruction in the FPGA architecture, and
the synthesis, placement and routing toolchain. The following
paragraphs present a brief explanation of the estimation of Al.

Al Parameter Estimation: We developed a set of
representative subgraphs, with various primitive instruction
types and configurations, to be used as micro-benchmarks for
systematically off-line estimation of Al on each target platform.
Although the methodology is the same, the values of the
parameters are FPGA-device specific. Al quantifies an
estimation of the percentage of the implementation capacity of
the LUT taken by the primitive instruction l. Similarly, if two
primitive instructions l and l΄ are fused on the same LUT, the
summation of the corresponding area estimation parameters Al
and Al΄ provides a good estimation of the consumption of the
LUT implementation capacity by both instructions.

An initial estimate of Al is computed by finding how many
primitive FUs of the same type l can be packed in one level of
logic of the same LUTs. We perform synthesis, placement and
routing on the given FU (or MFU) to determine the number of
consumed LUTs. The process of adding more FUs of the same
type continues, until the resulting subgraph requires more
LUTs for its implementation. For example two adders can be
packed in the same number of LUTs required for the
implementation of one adder of the same bitwidth; if a third
adder is added, it will occupy a different set of LUTs.
Therefore, the initial estimate of Aadd takes the value 0.5. If

packing a third adder on the same set of LUTs succeeded, the
estimate would be 0.33.

Given the initial estimates of parameters Al, the heuristic
performs a refinement step which tries to reduce the error in
the initial estimate. The second step refines the parameter Al
for primitive operation of type l by computing how many
primitive operations of type k, with Ak < Al, can be packed in
the same LUTs already occupied by operation l.

Rule Selection Example: Fig. 5 shows how we apply rule
selection on the grammar of the example of Fig. 3. The left
table of Fig. 5 contains the normalized metric parameters and
the corresponding fitness for each rule according to (1). After
selecting the rule with the maximum fitness (B in Fig. 3), we
update the metric parameters, and normalize their values again.
Note that after removing rule B from the grammar, we also
removed two instances of rule A, which appears now in only 3
instances. Rules A and C now have the same coverage since
they both cover 6 instructions. After updating the metrics, rules
A and C have both the same weight. Since rule C is using rule
A, OrderRules subroutine prioritizes rule C over rule A, and
hence the algorithm selects rule C for implementation and
removes 2 more instances of the rule A. Since rule A now
appears in only one instance, we can no longer consider it for
MFU implementation, because of the rule utility constraint:
rules must appear in the grammar with at least two instances.

B. Macro Functional Unit Pipelining

Once the set of rules have been selected for MFU
implementation, we have to determine the pipeline depth of
each MFU and therefore its latency.

The algorithm uses a default pipelining scheme for
inserting pipeline registers in MFU as a reference. The default
scheme greedily adds a pipeline register after each primitive
FU (Fig 6.a). In this reference pipeline scheme, the
combinational path of a single primitive FU (4-bit XOR and 4-
bit ADD FUs in Fig 6.b) is considered as one level of logic.
Hence, using the default pipelining scheme, only one level of
logic exists between two successive pipeline registers.

The algorithm traverses the MFU subgraph and removes a
pipeline register if its removal does not increase the levels of
logic cells between two other pipeline registers. For example,
in Fig 6.a, pipeline register R1 will be removed if it does not
increase the levels of logic between registers R0 and R2. In Fig
6.c, the removal of register R1 allowed fusing the logic cells of
the XOR FU with the logic cells of the ADD FU. The removal
of R1 produces a new Boolean expression that may be
implementable using one level of logic cells (LUTs).

To decide if the removal of a pipeline register will increase
the number of logic levels – in the form of LUTs – or not, the
algorithm uses the same set of Al parameters used in (4) to
compute the logic gain metric LGi. In general, if the summation
of area estimation parameters Al in a DFG sub-path, is less than
or equal to 1.0, we estimate that the corresponding primitive

instructions can be fused and implemented on a single LUT, or
equivalently, they require the same levels of logic as one
primitive instruction. As a result, intermediate registers in the
sub-path can be safely removed without affecting the timing
characteristics of the circuit.

C. Scheduling and Implementation

Once a set of rules is selected for MFU implementation,
each instance of a rule is converted to a macro instruction of
the specific type and the resulting DFG is scheduled using
modulo scheduling. A macro instruction is scheduled only
when all input data are available. We use Swing Modulo
Scheduling (SMS) [12] to generate a schedule of the DFG
nodes on the allocated resources. The scheduler identifies an
iterative pattern of instructions and their assignment to
functional units (FUs), so that each iteration can be initiated
before the previous ones terminate. SMS creates software
pipelines under the criterion of minimizing the Initiation
Interval (II). The latter is the main factor affecting
computational throughput. The value of II represents the rate at
which we initiate successive loop iterations. By increasing the
amount of allocated resources we lower the value of II, unless a
recurrence circuit in the loop prevents that. For II = 1, a
separate FU is allocated per instruction. Target IIs > 1 are
particularly useful in certain domains, where designs are
subject to strict resource constraints.

IV. EXPERIMENTAL EVALUATION

A. Methodology

The tool flow of Fig. 4 is used to produce macro-
instructions, and the synthesis engine performs resource
allocation, modulo scheduling and binding on the new DFGs.
Finally, the tool generates synthesizable Verilog of the DFG
datapath. We used Xilinx ISE 12.4 for synthesis, placement &
routing, targeting the Virtex-6 LX760 FPGA. Our benchmark
base consists of the 8 kernels outlined in Table I. The
benchmarks are computation-intensive and their DFG sizes
vary from tens up to thousands of primitive instructions.

CG MUXG LG W

A 1 0.5 0.95 1.45

B 0.8 1 1 1.6

C 0.6 0.67 0.72 0.83

CG MUXG LG W

A 1 0.75 1 1.75

C 1 1 0.75 1.75

Figure 5: The selection process of rules for the grammar of Fig 3. The

selected set of rules is: {B, C}. Parameter Al is 0.2 for logic operations,

0.5 for add/sub, and 1.0 for multiplications, divisions and FP operations
in a Virtex-6 architecture. These values are higher for the older Virtex-4

architecture.

(a) (b) (c)
Figure 6: (a) Reference pipeline scheme used as template for the
pipelining algorithm. (b) Logic level of pipelined Xor and Add operators.

(c) Fused Xor and Add operations in a single logic level.

TABLE I: APPLICATIONS USED FOR EVALUATION

Application Description

CMC AVS Video Decoder Chroma motion interpolation

Luma AVS Video Decoder Luma motion interpolation

DCT H.264 Video Encoder 8x8 Integer DCT

SEAL Seal cryptography kernel

CN Forward Error Correction (FEC) decoder CheckNode Kernel

BN Forward Error Correction (FEC) decoder BitNode Kernel

Deblocking AVS Video Decoder Deblocking Filter

LUD LU Decomposition Perimeter (Floating Point)

To explore the efficacy of the proposed grammar driven
synthesis approach, we experimented with a variety of datapath
configurations. A datapath configuration depends on the
number, type and bitwidth of allocated functional units, and
memory I/O bandwidth. Each configuration is characterized by
the Initiation Interval (II), as explained in Section III.C. We
experimented with three configurations: CA targeting II = 1 in
the original case, CB with II = 8, and CC with II = 16. The only
exception was SEAL, which contains complex cross-iteration
loop dependences that create recurrence scheduling constraints.
This constraint limits modulo scheduling ability to a minimum
II value of 60 cycles. The value of II relates with the size of the
multiplexer tree at FU input ports as well. Schedules with

higher II result into larger multiplexer trees due to FU reuse.

B. Grammar Representation Results

Table II summarizes some low-level characteristics of the
DFGs after grammar generation and rule selection. Column
“#Rules” lists the grammar size in numbers of rules generated
for each application. Column “#Used Rules” lists the number of
selected rules from each grammar to be implemented as MFUs
in the final representation of the DFG. Column “Rule Size”
shows the range of number of instructions per rule for the
selected rules subset. “#Instance per Rule” shows the average
number of instances per rule. Columns “#Insts” and “#Insts(g)”
list the DFG size before and after grammar-based
representation, respectively. Finally, “Reduction” shows the
percentage of reduction in the number of primitive instructions.

Unlike pattern recognition and enumeration approaches, the
generated set of subgraphs (i.e. rules) is much smaller in both
the total number of subgraphs and subgraph size, yet it covers
40% – 53% of the program DFG.

C. FPGA Placement & Routing Results

Fig. 7 shows the area results for all 8 benchmarks, for the
original and the optimized cases. On average, the grammar-
based approach achieved very good results even for kernels
with few instructions, delivering an average 12% area
reduction in terms of number of slices and number of flip-flops
(FFs are not shown in Fig. 7 for brevity). Reduced DFG size
with grammar-based compression required around 16% less
time on average to schedule and synthesize, which correlates
with the reduction in DFG size (Fig. 8). A noticeable result
appears for CN and BN kernels. These two kernels are very
large (approximately 4000 and 3000 nodes, respectively) and
are notoriously difficult to place and route. Without the
grammar-driven synthesis approach, the vendor-provided
synthesis tool failed to successfully finish placement and

routing even in large FPGAs such as LX760. After the
grammar-driven synthesis optimizations the tool generated a
fully placed and routed design in less than 3 hours (Fig. 8).

To gain a better understanding of the effects of our
methodology on lower-level FPGA components, we decided to
take a closer look at the type and number of multiplexers, since
this is one of the main causes of routing congestion. We
considered the DCT benchmark for CB configuration, for which
our approach reduces number of slices by 32%. After applying
our methodology the number of MUXF7 components, used to
implement 8:1 (or wider) multiplexers in Virtex-6, dropped
from 686 to 164 (4.18x), due to the reduction of the number of
input multiplexers in each FU. On the other hand, the number
of MUXCY components used in carry-propagation paths
increased from 983 to 1605 (1.63x). By combining multiple
operations (e.g. additions) in MFUs, we effectively increase the
number of fast carry logic paths in the FPGA.

Xilinx toolset also instantiates DSP hard blocks to
implement multiplications and in some cases, the number of
DSP blocks in the optimized RTL increases. For example, the
Luma benchmark requires 9 DSP blocks for CB configuration in
the optimized RTL up from 6 blocks in the unoptimized RTL.
Such increases have marginal effect on the routability and
performance of the final design, since it is always the LUTs
and flip-flops that dominate area requirements and drive
routing congestion.

TABLE II: GRAMMAR BASED DFG REPRESENTATION RESULTS.

“INSTS(G)” REFERS TO THE NUMBER OF DFG NODES AFTER
GRAMMAR BASED REPRESENTATION.

App. #Rules
#Selected

Rules

Rule

Size

#Instances

per Rule
#Insts #Insts(g) Reduct.

CMC 6 3 [2-9] 7 136 86 37%

LUMA 18 11 [2-4] 6 299 219 27%

DCT 10 8 [2-3] 9 307 197 36%

SEAL 8 5 [2-3] 6 143 107 25%

CN 18 7 [2-5] 127 3962 2500 37%

BN 8 5 [2-7] 64 2917 1677 43%

Deblocking 9 5 [2-4] 3 176 150 15%

LUD 1 1 [2] 2 20 18 10%

Figure 7: Number of slices (lower is better) for original and optimized

configurations (with grammar-driven datapath synthesis). In CN and BN

benchmarks the missing configurations for the original case are due to the
fact that the standard manufacturer toolchain failed to fully place & route

the generated RTL before applying our compression technique. The last bar

shows the number of slices according to [8]. The numbers above the bars
represent the schedule latency (in clock cycles) of a single loop iteration.

Grammar-based designs typically involve more FU types
than original designs in their datapath, due to the introduction
of MFUs. The additional MFU types impose an area overhead.
The issue manifests more clearly in the CC configurations,
where few FU instances (normally one or two) are allocated for
each FU type. For DCT and Luma, our algorithm achieves 32%
and 17% reduction in area respectively for the CB
configuration. For the CC configuration area gains are limited
to 20% and 13%. These two kernels use 8 and 11 MFU types
respectively in their datapath. While using MFUs reduces
multiplexer area, the area overhead from the large number of
used rules limits the overall area reduction for configuration
CC. On the other hand, CMC and SEAL kernels use only 3 and
5 rules respectively, with limited area overhead, hence
configuration CC outperforms configuration CB. Note also that
MFU area overhead can be reduced whenever the pipeline
algorithm identifies opportunities to produce compact and
lightweight MFUs, which is the case for CMC and SEAL. On
the contrary, MFUs in DCT and Luma datapaths consist of
heavyweight primitive FUs, that could not be effectively fused.

DFGs characterized by patterns with a very low number of
occurrences and low DFG coverage are also potentially
susceptible to area overheads from the introduction of MFUs.
In this case, the combination of MFUs overhead with the
limited multiplexer reduction might produce designs with very
little or no area reduction, which is the case for LUD and
Deblocking kernels. However, during our experimental
evaluation with a variety of kernels we observed that, even for
DFGs with a small number of pattern repetitions (see Table II,
#Instances per Rule), area reductions are achieved because
these repetitions cover 45% to 53% of the DFG. Therefore,
instruction clustering led to a significant reduction in the area
spent for multiplexers, overweighing the MFUs area overhead.

It appears from the experimental evaluation that the
grammar-based approach sometimes performs poorly at II = 1.
This is expected, because in this case there are no multiplexers
to optimize out. For some benchmarks (DCT and Luma) the
consumed area is slightly more than that of the original
configurations. For these benchmarks, the pipeline algorithm
produced fully pipelined MFUs, because they contained
heavyweight primitive FUs that could not be fused with others.
Moreover, using macro-instructions in those benchmarks
increased variable lifetimes, which led to allocating more
registers. This is, for example, the case for the BN kernel
(configuration CA). The version produced after instruction
clustering requires more area than the original one, despite the

fact that the pipelining algorithm efficiently produced more
compact MFUs. Most of the generated MFUs in BN kernel are
not flat. They have latencies between 3 and 4 cycles (after
being optimized down from 7 cycles by the pipelining
algorithm). The large amount of MFUs with such latencies
imposed an overhead on the scheduler, leading to increased
variable lifetimes and registers requirements.

 On the other hand, the proposed approach worked well
even at II = 1 for benchmarks such as CMC, Deblocking and
CN, in which the logic gain for generated macro-instructions
was significant. The MFUs produced were compact and
lightweight, which subsequently led to the area reduction.
Compact MFUs generated after the pipelining algorithm have a
positive impact on variables lifetime at II = 1, leading to
reductions in registers requirements. Therefore, at II = 1, area
reductions are obtained mainly by compressing and optimizing
the generated MFUs.

We have implemented a state of the art algorithm described
by Cong et al. [8] and have integrated it in our synthesis flow
to compare the two methodologies (Fig. 7, third set of bars).
Our approach produces designs with smaller number of slices
than [8] by 6%, on average, and over 9% for higher II values.
Our algorithm performs better than [8], especially in BN, CN,
Luma, and SEAL kernels because we use fewer patterns to
represent the DFG, despite covering nearly the same number of
instructions. For example, we select 5 and 7 rules for BN and
CN, while [8] selects 8 and 11 respectively. Both algorithms
cover approximately the same number of primitive FUs (43%
and 37% for BN and CN, respectively). In CMC, both
algorithms used the same patterns to implement the datapath,
however our MFU packing algorithm produces more compact
MFUs with smaller area. For DCT, LUD and Deblocking
kernels, our algorithm and Cong’s approach produced almost
the same patterns which were also implemented in a similar
manner, hence the area reduction by both approaches is similar.

We should note that our approach performs better than [8]
at higher II. This correlates with the fact that multiplexers
reduction increases in proportion to II, meaning that our
approach is more successful in reducing the number of
multiplexers.

Fig. 8 shows the synthesis, placement & routing (SPR)
speedup achieved on the standard Xilinx toolset for the
optimized versus the original DFGs. SPR for grammar-based
designs is on average faster than for the original designs,
achieving an average speedup 1.16x for CC configuration
without taking into account CN and BN kernels. Original CN
and BN kernels in CB and CC configurations were processed for
over 12 hours before eventually failing to produce a bitstream
due to routing congestion. The DFGs produced for the same
benchmarks and configurations by the grammar-based
approach succeeded in less than 3 hours. CN kernel achieves
the highest speedup (2.2x) among the other benchmarks,
mainly because of the significant area reduction attained by the
optimized design. Our algorithm also resulted into faster SPR
time over [8] by 7% on average for all configurations. In other
words, our algorithm creates designs that occupy less area at a
smaller amount of SPR overhead compared to [8].

The achieved clock frequency for optimized configurations
has a deviation between +8% (frequency increase) to -1.2%
from the original configurations with an average +1.6%
(excluding benchmarks in which P&R on the original failed).

The proposed grammar-based algorithm is very fast; in all
cases the grammar generation and rules selection took less than
a second to finish and produce a new DFG.

Figure 8: Synthesis, Placement & Routing (SPR) speedup of designs

produced by applying our algorithm and the algorithm described in

[8] with respect to unoptimized designs. CB and CC bars in BN and
CN kernels are missing because the original designs failed to finish

placement and routing successfully after 12 hours of runtime, while

optimized designs succeeded within 3 hours.

V. RELATED WORK

Extracting regular computation patterns has been the focus
of prior research in behavioral datapath synthesis [1-9]. In [10]
the authors provide an extensive overview of the research in
instruction-set extension. Regularity extraction has also been
used for custom instruction generation [5,7,8]. The proposed
approaches can be categorized based on how they solve the two
sub-problems: candidate subgraph generation and selection.

Candidate subgraph generation. Early work used
variations of enumeration techniques augmented with a set of
constraints or a guide function to prune the search space [1,7].
Another set of early works used pattern recognition techniques
to extract computations regularities in a DFG. A set of works
[5,8,9] uses user-defined patterns libraries and patterns
matching techniques to improve the quality of logical synthesis
at the behavioral level.

Cong et al. proposed a pattern-recognition based approach
for FPGA resources reduction [8], in which – contrary to our
approach – pattern instances do not need to be totally identical.
Therefore, MFUs can have extra multiplexers on intra-FU
interconnects, increasing the area overhead of MFUs.
Candidate subgraph selection. All aforementioned papers
approached the candidate subgraph selection problem in a
similar manner: a cost function and a set of metrics have been
used to weigh the performance gain and the feasibility of a
candidate subgraph. In previous research that targeted
application specific processors and instructions set extensions
[1,2,7], where the concern is increasing processors
performance, metrics that estimate latency, area, and
inputs/outputs number have be used.

Cong [8] used metrics that estimate multiplexers cost
reduction and latency. The latency metric gives higher priority
to flat subgraphs. In our case latency is not the primary
concern. The critical path latency is actually effectively
reduced during MFU pipelining. However, using the flatness
metric of Cong could reduce the variables lifetime overhead
which appears in the BN kernel at configuration CA (Fig. 7).

Prior work addressed the problem of multiplexer size
reduction. The majority of works are based on resources
binding techniques in datapath synthesis [4,11]. The drawback
of previous binding algorithms is that they fail to exploit
regular patterns and rely solely on iterative algorithms to
minimize the multiplexers overhead during resources binding.

VI. CONCLUSION

In this paper we introduced a grammar-based datapath
synthesis methodology. Our approach targets the reduction of
the routing complexity and overhead in FPGA designs. The
core of the methodology is the production of a hierarchical
grammar representation of a DFG. The rules of the grammar
correspond to cuts of the DFG which can be considered as
candidate macro-instructions. The algorithm performs
grammar generation, rules selection and implementation with
very small computational complexity. Furthermore, we
presented a simple yet systematic area estimation technique,
which can be applied to characterize each target FPGA
architecture and toolchain. The results of the area estimation
are used to both guide the rules selection phase, and drive the
insertion of pipeline registers in the produced macro FUs.

Experiments showed the efficiency of the proposed
approach in reducing routing complexity and hence reducing
area. Moreover, the pipelining algorithm typically produced
schedules with smaller latency and no penalty on clock

frequency. Most importantly the grammar-driven optimization
allowed successful placement and routing on complex designs
that were not deemed implementable before.

ACKNOWLEDGMENT

This work was supported by EU (European Social Fund ESF)
and Greek funds through the operational program Education
and Lifelong Learning of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS.

REFERENCES

[1] ATASU, K. POZZI, L. AND IENNE, P.2003. Automatic

application-specific instruction-set extensions under micro-

architectural constraints. In Proceedings of the 40th annual Design
Automation Conference (DAC ’03). San Francisco, CA, 256–261.

[2] BRINGMANN, O. AND ROSENSTIEL, W. 1997. Resource

Sharing in Hierarchal Synthesis. In Proceedings of the IEEE/ACM

Conference on Computer Aided Design (ICCAD’97). San Jose, CA,
318-325.

[3] BRISK, P. KAPLAN, A. KASTNER, R. AND SARRAFZADEH M.

2002. Instruction Generation and Regularity Extraction for

Reconfigurable processors. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded

Systems (CASES ‘02). Grenoble, France, 262 - 269.

[4] CHEN, D. AND CONG, J. 2003. Low-Power High-Level Synthesis

for FPGA Architectures. In Proceedings of the International
Symposium On Low Power Electronics and Design (ISLPED’03).

ACM, Seoul, Korea, 134 – 139.

[5] CHOWDHARY, A. KALE, S. SARIPELLA, P. SEHGAL, N. AND

GUPTA, R.. Extraction of Functional Regularity in Datapath
Circuits. IEEE Transactions On Computer Aided Design of

Integrated Circuits and Systems. vol. 18, pg. 1279-1296, Sept. 1999

[6] CHRIS, L. AND VIKRAM, A. 2004. LLVM: A Compilation

Framework for Lifelong Program Analysis Transformation. In
Proceedings of the International Symposium on Code Generation

and Optimization (CGO ’04). IEEE, Palo Alto, CA, 75-86.

[7] CLARK, N. ZHONG, H. AND MAHLKE, S. Automatic custom
instruction generation for domain-specific processor acceleration.

IEEE Transactions on Computers, vol. 54, issue 10, pg. 1258 –

1279, Oct. 2005

[8] CONG, J. AND JIANG, W. 2008. Pattern-based behavior synthesis
for FPGA resources reduction. In Proceedings of the 16th

international ACM/SIGDA symposium on Field programmable gate

arrays (FPGA ’08). ACM, Monterey, CA, 107 - 116.

[9] CORAZAO, M. KHALAF, M. GUERRA, L. POTKONJAK, M.
AND RABAEY, M. 1996. Performance Optimization Using

Template Mapping for Datapath-Intensive High Level Synthesis.

IEEE Transc. On Computer Aided Design of Integrated Circuits and
Systems. vol. 15, issue 8, pg. 877-888.

[10] GALUZZI, C. AND BERTELS, K. 2011. The instruction-set

extension problem: A survey. In ACM Transactions on

Reconfigurable Technology and Systems, vol. 4, issue 2, pg. 18:1-
18:28

[11] HUANG, C. Y. CHEN, Y. S. LIN, Y. L. AND HSU, Y. C. 1990.

Data Path Allocation Based on Bipartite Weighted Matching. In

Proceedings of the 27th annual ACM/IEEE Design Automation
Conference (DAC ’90). ACM, San Orlando, FL, 499 – 504.

[12] JOSEP, L. ANTONIO, G. EDUARD, A. AND MATEO, V. 1996.

Swing Modulo Scheduling: A Lifetime-Sensitive Approach. In

Proceedings of the Conference on Parallel Architectures and
Compilation Techniques (PACT ’96). IEEE, Boston, MA, 80-86.

[13] MANNING, N. WITTEN, H. AND MAULSBY, L. 1994.

Compression by Induction of Hierarchical Grammars. In

Proceedings of Data Compression Conference (DCC ’94).
Snowbird, UT, 244-253.

