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Non Linear Parabolic PDEs

ou
T L(u) +G(u) (1)
Let,

L(u) := the parabolic linear operator and
G(u) := the non linear operator of the PDE.

A careful assembly of all interior elemental and boundary
collocation equations in (1), leads to the system:

CcWa = L(a) + G(a)

where L(a) and G(a) are the discrete analogues of £(u) and G(u).
Finally, assuming that L(a) = [C(O)]fl L(a) and
G(a) = [C'(O)]71 G(a) we get the system of ODEs below:

a=1L(a)+G(a) (2)
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Time Discretization Schemes - Runge-Kutta

The formulation of RK

Butcher form:

al® a” + Atzaij (E(a(J)) + G(a(J)))
j=1
al = A"t AtY b (ﬂ(a(])) + G(a(J))>
j=1
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Time Discretization Schemes - Diagonally Implicit

Runge-Kutta

Diagonally-Implicit RK (DIRK), is a class of Runge-Kutta Methods
determined by the properties:

@ a;; =0 for every j >

@ a; =M\ foreveryi=1,...,m
Constant A is chosen for improving the stability properties of
method.
DIRK methods are simpler and computationally more efficient than

full-implicit or implicit methods, while they present their stability
properties (under some necessary conditions).



Time Discretization Schemes - DIRK

Optimal DIRK methods

DIRK(2,3)

al) =a” 4+ \At (ﬂ(a(l)) + G(a(l)))

a® —a" 4+ At[(1-2)) (L@W) + G@™M) + 2 (L@®) + Ga®))]
amtl—a" + % [(i(a“)) + é(a<1>)) + (z(a<2>) + é(a<2>))}

Generally DIRK(2,3) is second order method except the case of
A= % + § where becomes third order method.



Time Discretization Schemes - DIRK

Optimal DIRK methods

DIRK(2,3)

al) =a" + )\A¢ (ﬂ(a“)) + G(a(”))

a® =a" 4+ At[(1-2)) (L@D) + G@M)) + 2 (L@®) +G@?))]
amtl—a" + % [(i(a“)) + é(a<1>)) + (z(a<2>) + é(a<2>))}

Generally DIRK(2,3) is second order method except the case of
A= % + § where becomes third order method.



Time Discretization Schemes - SSP Runge-Kutta

The need for SSP methods

Strong Stability Preserving Runge-Kutta Schemes are highly stable
methods, especially for nonlinear hyperbolic problems with
discontinuous solution.

If the solution of a PDE is nonsmooth, stability in Ly norm is not
sufficient because the presence of oscillations prevents the
approximation from converging uniformly.

SSPRK methods require stability in the maximum norm or in the
TV semi-norm in order to ensure that the numerical scheme does
not allow oscillations to form.

N
lallry =) laj1 — aj
=0



Time Discretization Schemes - SSP Runge-Kutta

The formulation of SSRK

Shu-Osher (a — () form:

a® _ gn

a
i—1
al = [ai’ka(k) + Atk (i(a(k)) + C:’(a(k))ﬂ
k=0
an—l—l — a m)
where,
1,0 ,31,0
@20 Q21 52,0 ﬂ2,1
o= , B= .
am,O CMrn,l e Am,m—1 ﬁm,O ﬁm,l e ﬁm,mfl



Time Discretization Schemes - SSP Runge-Kutta

Optimal explicit SSP Runge-Kutta methods

SSP(3,3)

1 ~
2 — Zgng M4 = (1) 1)
a 2 T +4At (L(a )+ G(a ))
2 ~ ~
ntl . 1.n 4 _(2) “ (2) (2)
a 32 + 32 + SAt (L(a )+ G(a ))
SSP(4,3)



Time Discretization Schemes - SSP Runge-Kutta

Optimal explicit SSP Runge-Kutta methods

SSP(3,3)

1 -
2 — Zgng M4 = (1) 1)
a 12 +4a +4At (L(a )+ G(a ))
, 1 2 2 ~ ~
ntl _  Z.n £ _(2) 4 (2) (2)
a Ja" + za® 4 SA (L(a )+ G(a ))
SSP(4,3)
1 - -
(1) — n _ n n
a a" + 2At (L(a )+ G(a ))
a® = a4 %At (N(a(l)) + @(a(l)))
2 1 1 ~ ~
() = Zgna @4 - (2) (2)
a 3@ + 32 + 6At (L(a )+ G(a ))
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Time Discretization Schemes - IMplicit EXplicit

Runge-Kutta (IMEX RK)

A first possibility is the discretization of equation (2) by DIRK, an
advantage is that these schemes have good stability properties,
and a drawback that they require solving several nonlinear systems
of equations (resulting from operator G(a)).

A second possibility, is the discretization of equation (2) by
SSPRK, such schemes are fast and simple but the approximation
converge only under an appropriate time restriction.

A third possibility, is the discretization of each operator separately
by using IMEX methods.
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Time Discretization Schemes - IMEX RK

The formulation of IMEX

a® = am 4 A i L +Atz%

biL(a®) + Athié(a(i))

1 =1

a"tl = a" 4 At

MS Il

-
Il

where A = (a;;), a;j = 0 for every j > i and A = (@) : m xm
are lower triangular matrices, while b,b € R™
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Time Discretization Schemes - IMEX RK

Optimal IMEX RK methods

IMEX RK(3,3,2)

al) = a" 4 A\AtL(@WY)
a® = a4+ AtG@Y) + At(1 — 20 L(@W) + NAtL(a?)
At T~ - 1 - .
a® = an4 T [G(a“)) + G(a@)} +At( — AN L@W) + AAtL@E@®)
amtl — any % [é(a<1>) +G(a®) + 4é(a<3>)}

+ % [Z(aﬂ)) + L(@?) + 4Z(a<3>)}
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Time Discretization Schemes - IMEX RK

Optimal IMEX RK methods

IMEX RK(3,3,2)

a)

a" + MAtL(a)

a? = am+ AtG(@W) + At(1 — 2\ L(@W) + NAtL(a'?)
. At 7~ - 1 . .
a® = a"4 T [G(a“)) + G(a@)} +At( — A L@W) + AAtL@E@®)
a"tt = a"+ % [@(a(l)) +G@?) + 4G(a(3))]

+ % [Z(aﬂ)) + L(@?) + 4Z(a<3>)}
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Biological invasion problems

Generalized Fisher’s equation

Classical Fisher’s equation

up = [Dug), + Aou — A3u?

Replacing the constant diffusion coefficient D by a
density-dependent D(u) and assuming that the diffusivity depends
linearly on density, namely D(u) = Aou + Ay, the

Generalized Fisher’'s equation takes the form:

up = [(Aou + M) ug), + Aau — Agu? (3)

uzp(a,t) =0, uz(b,t) =0
u<m70) = f(x)
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Biological invasion problems

Generalized Fisher’s equation

The linear operator of (3) is L(u) = A=

. . O*u ou\ > 9
and the non linear is G(u) = Aou—=—= + X | =— | — Asu®,
Ox? i

so equation (3) can take the form :

ou
04 _ (w) + 6w
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Biological invasion problems
Applying Hermite Collocation
The Hermite Collocation method seeks O(h*) approximations in

the form:

N+1

Uz, t) =Y [agj—1(t)daj-1(x) + az;(t)da;(2)]

J=1
and if z € I; element we may write:

2542

Uz, t) = > ap(t)dr(z)

k=2j—1

Applying all interior elemental & boundary collocation equations in
L(w) is trivial that:

L(a) = \CPa+ 10 Va
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Biological invasion problems
Applying Hermite Collocation

To express, now, the discrete operator of G(u) in matrix form we
will use the following propotition for the general nonlinear term:

éwzU@t%?lij):<Cmb)o(ka)

Oxm

where, the symbol o denote the Hadamard matrix product.
So, the discrete operator G(a) takes the form:

G(a) = Ao (C’(O)a)o(C(2)a> +Xo (C(l)a)o<c(1)a) 3 (C(o)a>o(c(o)a)
Hence, equation (3) may be written as:

Cca = L(a) + G(a)
a=L(a)+ G(a)



Numerical Results

Model Problem |

up = [(1—w)ug], +2u—2u® , —57/2<x<57/2, 0<t<T
1
um(% t) =0, u$(577T t)y=0 , u(z,0) = 3 [2 4 sin (—z)]

—t(a.2t s
and admits the exact solution u(x,t) = 1 {e (3¢ +1+2sin( x))]

3 et4e—t
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Numerical Results

Model Problem |

[ “ Error Norm Ex H Collocation’s o.0.c H Time to reach t = 2 ]
[ N “ SSP(4,3) IMEX H SSP(4,3) IMEX H SSP(4,3) IMEX ]
32 1.53e-04 1.55-04 - - 0.01 0.06
64 9.85e-06  9.86e-06 3.95 3.97 0.05 0.22
128 6.20e-07  6.19e-07 3.99 3.99 0.14 0.92
256 3.88e-08  3.85e-08 4.00 3.99 0.72 4.42
512 2.56e-09  2.55e-09 3.93 3.92 4.28 23.63
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Numerical Results

Model Problem |

. —=— SSPRK(4,3)
i T T T T T T mem—ee o __ _
N o T 7T - .- IMEX(3.3,2)
e
0t 1
o
=]
Q0L 1
Qo
<
]
=Rl 4
3
12]
ol ]
o .

10°
Elements (N)

2or . IMEX(3,3,2) ]
L .SSPRK 4,3) 4

Time in seconds

256
Elements (N)
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Numerical Results

Model Problem II

Error Norm Ex

“ Collocation’s o.0.c “ Time to reach t = 2 ]

[N [ DRK _ IMEX [ DIRK _ IMEX | DIRK IMEX__|
80 || 7.13e-07 9.39e-07 || - - 0.18 0.04
160 || 4.60e-08 6.61e-08 | 3.95 3.82 058 0.06
320 || 2.90e-09 3.86e-09 || 3.98 4.09 3.27 0.17
640 | 1.94e10 2.36e-10 || 3.89 4.02 19.80 0.60
1280 || 1.74e-11  1.47e1l || 3.47 4.00 124.28 3.26
2560 - - - - 89134 19.63
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Numerical Results

Model Problem II

Spatial Absolute Error

Time in seconds

It . .

P —=—DIRK ]
. - - - IMEX

o B
10° - —
10° - —
107 —
1072 —
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Elements (N)

1280

640
Elements (N)
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Biological invasion problems

(2+1) Dimensions

% =V[DV(u)] , u:=u(z,y,t)

(z,y) €[a,b]?> , 0<t<T
U(CC,y,O):f({E,y) v =0

—

Figure : Stripes Problem (left) and Rectangular Problem (right).
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Biological invasion problems

(2+1) Dimensions - Stripes

v s (wy) €[4, -2 x [-4,4]
D=<¢1 , (z,y) € (22)><( 2,2)

v (@y) € [2,4] x [-4,4]
Two dimensional Collocation matrices in Stripes problem can be

formed as the cronecker product of 1D DHC and HC matrices.
System of ODEs:

(é;m ® C;0>) a = (Dxé‘f) ® C;0>) a+ (Dmé;@ ® C<2>) a
Apa = (A20 + Aog) a
Ao()é = Ba

where, D, = diag(y,...,v,1,...,1,7,...,7) € RN
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Biological invasion problems

(2+1) Dimensions - Stripes

DIRK method for 2D Stripes Problem

’ N H Error Norm €4 H 0.0.cC. H Time to reach t =1
64 3.61e-03 - 2.14
128 1.44e-05 7.96 7.86
256 9.89e-07 3.86 47.98
512 6.31e-08 3.96 330.72
1024 3.97e-09 3.98 2604.38
2048 - - 23836.24
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Biological invasion problems

(2+1) Dimensions - Stripes

Time in seconds

Absolute Spatial Error

Elements (N)

512
Elements (N)
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Thank you

Thank you!!
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