Runge-Kutta and Discontinuous Hermite Collocation for biological invasion problems modeled by non linear parabolic equations

I.E. Athanasakis, .P. Papadopoulou and Y.G. Saridakis

Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100, Greece gathanasakis@gmail.com



European Union European Social Fund





Co-financed by Greece and the European Union

# Non Linear Parabolic PDEs

$$\frac{\partial u}{\partial t} = \mathcal{L}(u) + \mathcal{G}(u)$$
 (1)

Let,

 $\mathcal{L}(u) :=$  the parabolic linear operator and  $\mathcal{G}(u) :=$  the non linear operator of the PDE.

A careful assembly of all interior elemental and boundary collocation equations in (1), leads to the system:

 $C^{(0)}\dot{\mathbf{a}} = L(\mathbf{a}) + G(\mathbf{a})$ 

where  $L(\mathbf{a})$  and  $G(\mathbf{a})$  are the discrete analogues of  $\mathcal{L}(u)$  and  $\mathcal{G}(u)$ . Finally, assuming that  $\tilde{L}(\mathbf{a}) = [C^{(0)}]^{-1} L(\mathbf{a})$  and  $\tilde{G}(\mathbf{a}) = [C^{(0)}]^{-1} G(\mathbf{a})$  we get the system of ODEs below:

$$\dot{\mathbf{a}} = \tilde{L}(\mathbf{a}) + \tilde{G}(\mathbf{a}) \tag{2}$$

# Time Discretization Schemes - Runge-Kutta The formulation of RK

#### **Butcher form:**

$$\mathbf{a}^{(i)} = \mathbf{a}^n + \Delta t \sum_{j=1}^m a_{ij} \left( \tilde{L}(\mathbf{a}^{(j)}) + \tilde{G}(\mathbf{a}^{(j)}) \right)$$
$$\mathbf{a}^{n+1} = \mathbf{a}^n + \Delta t \sum_{j=1}^m b_j \left( \tilde{L}(\mathbf{a}^{(j)}) + \tilde{G}(\mathbf{a}^{(j)}) \right)$$

Diagonally-Implicit RK (DIRK), is a class of Runge-Kutta Methods determined by the properties:

- $a_{ij} = 0$  for every j > i
- $a_{ii} = \lambda$ , for every  $i = 1, \dots, m$

Constant  $\boldsymbol{\lambda}$  is chosen for improving the stability properties of method.

DIRK methods are simpler and computationally more efficient than full-implicit or implicit methods, while they present their stability properties (under some necessary conditions).

# **DIRK(2,3)**

$$\begin{aligned} \mathbf{a}^{(1)} &= \mathbf{a}^{n} + \lambda \Delta t \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) \\ \mathbf{a}^{(2)} &= \mathbf{a}^{n} + \Delta t \left[ (1 - 2\lambda) \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) + \lambda \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \right] \\ \mathbf{a}^{n+1} &= \mathbf{a}^{n} + \frac{\Delta t}{2} \left[ \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) + \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \right] \end{aligned}$$

Generally DIRK(2,3) is second order method except the case of  $\lambda = \frac{1}{2} \pm \frac{\sqrt{3}}{2}$  where becomes third order method.

# **DIRK(2,3)**

$$\begin{aligned} \mathbf{a}^{(1)} &= \mathbf{a}^{n} + \lambda \Delta t \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) \\ \mathbf{a}^{(2)} &= \mathbf{a}^{n} + \Delta t \left[ (1 - 2\lambda) \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) + \lambda \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \right] \\ \mathbf{a}^{n+1} &= \mathbf{a}^{n} + \frac{\Delta t}{2} \left[ \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) + \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \right] \end{aligned}$$

Generally DIRK(2,3) is second order method except the case of  $\lambda = \frac{1}{2} \pm \frac{\sqrt{3}}{2}$  where becomes third order method.

Strong Stability Preserving Runge-Kutta Schemes are highly stable methods, especially for nonlinear hyperbolic problems with discontinuous solution.

If the solution of a PDE is nonsmooth, stability in  $L_2$  norm is not sufficient because the presence of oscillations prevents the approximation from converging uniformly.

SSPRK methods require stability in the maximum norm or in the TV semi-norm in order to ensure that the numerical scheme does not allow oscillations to form.

$$||\mathbf{a}||_{TV} = \sum_{j=0}^{N} |\mathbf{a}_{j+1} - \mathbf{a}_{j}|$$

# Time Discretization Schemes - SSP Runge-Kutta The formulation of SSRK

Shu-Osher  $(\alpha - \beta)$  form:

$$\mathbf{a}^{(0)} = \mathbf{a}^{n}$$
$$\mathbf{a}^{(i)} = \sum_{k=0}^{i-1} \left[ \alpha_{i,k} \mathbf{a}^{(k)} + \Delta t \beta_{i,k} \left( \tilde{L}(\mathbf{a}^{(k)}) + \tilde{G}(\mathbf{a}^{(k)}) \right) \right]$$
$$\mathbf{a}^{n+1} = \mathbf{a}^{(m)}$$

where,

$$\alpha = \begin{bmatrix} \alpha_{1,0} & & & \\ \alpha_{2,0} & \alpha_{2,1} & & \\ \vdots & \vdots & \ddots & \\ \alpha_{m,0} & \alpha_{m,1} & \cdots & \alpha_{m,m-1} \end{bmatrix}, \beta = \begin{bmatrix} \beta_{1,0} & & \\ \beta_{2,0} & \beta_{2,1} & & \\ \vdots & \vdots & \ddots & \\ \beta_{m,0} & \beta_{m,1} & \cdots & \beta_{m,m-1} \end{bmatrix}$$

## Time Discretization Schemes - SSP Runge-Kutta Optimal explicit SSP Runge-Kutta methods

SSP(3,3)

$$\begin{aligned} \mathbf{a}^{(1)} &= \mathbf{a}^n + \Delta t \left( \tilde{L}(\mathbf{a}^n) + \tilde{G}(\mathbf{a}^n) \right) \\ \mathbf{a}^{(2)} &= \frac{3}{4} \mathbf{a}^n + \frac{1}{4} \mathbf{a}^{(1)} + \frac{1}{4} \Delta t \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) \\ \mathbf{a}^{n+1} &= \frac{1}{3} \mathbf{a}^n + \frac{2}{3} \mathbf{a}^{(2)} + \frac{2}{3} \Delta t \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \end{aligned}$$

$$\begin{split} \mathbf{a}^{(1)} &= \mathbf{a}^n + \frac{1}{2} \Delta t \left( \tilde{L}(\mathbf{a}^n) + \tilde{G}(\mathbf{a}^n) \right) \\ \mathbf{a}^{(2)} &= \mathbf{a}^{(1)} + \frac{1}{2} \Delta t \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) \\ \mathbf{a}^{(3)} &= \frac{2}{3} \mathbf{a}^n + \frac{1}{3} \mathbf{a}^{(2)} + \frac{1}{6} \Delta t \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \\ \mathbf{a}^{n+1} &= \mathbf{a}^{(3)} + \frac{1}{2} \Delta t \left( \tilde{L}(\mathbf{a}^{(3)}) + \tilde{G}(\mathbf{a}^{(3)}) \right) \end{split}$$

## Time Discretization Schemes - SSP Runge-Kutta Optimal explicit SSP Runge-Kutta methods

SSP(3,3)

$$\begin{aligned} \mathbf{a}^{(1)} &= \mathbf{a}^n + \Delta t \left( \tilde{L}(\mathbf{a}^n) + \tilde{G}(\mathbf{a}^n) \right) \\ \mathbf{a}^{(2)} &= \frac{3}{4} \mathbf{a}^n + \frac{1}{4} \mathbf{a}^{(1)} + \frac{1}{4} \Delta t \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) \\ \mathbf{a}^{n+1} &= \frac{1}{3} \mathbf{a}^n + \frac{2}{3} \mathbf{a}^{(2)} + \frac{2}{3} \Delta t \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \end{aligned}$$

SSP(4,3)

$$\begin{aligned} \mathbf{a}^{(1)} &= \mathbf{a}^{n} + \frac{1}{2} \Delta t \left( \tilde{L}(\mathbf{a}^{n}) + \tilde{G}(\mathbf{a}^{n}) \right) \\ \mathbf{a}^{(2)} &= \mathbf{a}^{(1)} + \frac{1}{2} \Delta t \left( \tilde{L}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(1)}) \right) \\ \mathbf{a}^{(3)} &= \frac{2}{3} \mathbf{a}^{n} + \frac{1}{3} \mathbf{a}^{(2)} + \frac{1}{6} \Delta t \left( \tilde{L}(\mathbf{a}^{(2)}) + \tilde{G}(\mathbf{a}^{(2)}) \right) \\ \mathbf{a}^{n+1} &= \mathbf{a}^{(3)} + \frac{1}{2} \Delta t \left( \tilde{L}(\mathbf{a}^{(3)}) + \tilde{G}(\mathbf{a}^{(3)}) \right) \end{aligned}$$

A first possibility is the discretization of equation (2) by DIRK, an advantage is that these schemes have good stability properties, and a drawback that they require solving several nonlinear systems of equations (resulting from operator G(a)).

A second possibility, is the discretization of equation (2) by SSPRK, such schemes are fast and simple but the approximation converge only under an appropriate time restriction.

A third possibility, is the discretization of each operator separately by using IMEX methods.

11

# Time Discretization Schemes - IMEX RK The formulation of IMEX

$$\mathbf{a}^{(i)} = \mathbf{a}^n + \Delta t \sum_{j=1}^{i-1} \tilde{a}_{ij} \tilde{L}(\mathbf{a}^{(j)}) + \Delta t \sum_{j=1}^{i} a_{ij} \tilde{G}(\mathbf{a}^{(j)})$$
$$\mathbf{a}^{n+1} = \mathbf{a}^n + \Delta t \sum_{i=1}^{m} \tilde{b}_i \tilde{L}(\mathbf{a}^{(i)}) + \Delta t \sum_{i=1}^{m} b_i \tilde{G}(\mathbf{a}^{(i)})$$

where  $A = (a_{ij})$ ,  $a_{ij} = 0$  for every  $j \ge i$  and  $\tilde{A} = (\tilde{a}_{ij})$ :  $m \times m$  are lower triangular matrices, while  $b, \tilde{b} \in \mathbb{R}^m$ 

# Time Discretization Schemes - IMEX RK Optimal IMEX RK methods

# IMEX RK(3,3,2)

$$\begin{aligned} \mathbf{a}^{(1)} &= \mathbf{a}^{n} + \lambda \Delta t \tilde{L}(\mathbf{a}^{(1)}) \\ \mathbf{a}^{(2)} &= \mathbf{a}^{n} + \Delta t \tilde{G}(\mathbf{a}^{(1)}) + \Delta t (1 - 2\lambda) \tilde{L}(\mathbf{a}^{(1)}) + \lambda \Delta t \tilde{L}(\mathbf{a}^{(2)}) \\ \mathbf{a}^{(3)} &= \mathbf{a}^{n} + \frac{\Delta t}{4} \left[ \tilde{G}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(2)}] + \Delta t (\frac{1}{2} - \lambda) \tilde{L}(\mathbf{a}^{(1)}) + \lambda \Delta t \tilde{L}(\mathbf{a}^{(3)}) \\ \mathbf{a}^{n+1} &= \mathbf{a}^{n} + \frac{\Delta t}{6} \left[ \tilde{G}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(2)}) + 4 \tilde{G}(\mathbf{a}^{(3)}) \right] \\ &+ \frac{\Delta t}{6} \left[ \tilde{L}(\mathbf{a}^{(1)}) + \tilde{L}(\mathbf{a}^{(2)}) + 4 \tilde{L}(\mathbf{a}^{(3)}) \right] \end{aligned}$$

# Time Discretization Schemes - IMEX RK Optimal IMEX RK methods

# IMEX RK(3,3,2)

$$\begin{aligned} \mathbf{a}^{(1)} &= \mathbf{a}^{n} + \lambda \Delta t \tilde{L}(\mathbf{a}^{(1)}) \\ \mathbf{a}^{(2)} &= \mathbf{a}^{n} + \Delta t \tilde{G}(\mathbf{a}^{(1)}) + \Delta t (1 - 2\lambda) \tilde{L}(\mathbf{a}^{(1)}) + \lambda \Delta t \tilde{L}(\mathbf{a}^{(2)}) \\ \mathbf{a}^{(3)} &= \mathbf{a}^{n} + \frac{\Delta t}{4} \left[ \tilde{G}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(2)}] + \Delta t (\frac{1}{2} - \lambda) \tilde{L}(\mathbf{a}^{(1)}) + \lambda \Delta t \tilde{L}(\mathbf{a}^{(3)}) \\ \mathbf{a}^{n+1} &= \mathbf{a}^{n} + \frac{\Delta t}{6} \left[ \tilde{G}(\mathbf{a}^{(1)}) + \tilde{G}(\mathbf{a}^{(2)}) + 4 \tilde{G}(\mathbf{a}^{(3)}) \right] \\ &+ \frac{\Delta t}{6} \left[ \tilde{L}(\mathbf{a}^{(1)}) + \tilde{L}(\mathbf{a}^{(2)}) + 4 \tilde{L}(\mathbf{a}^{(3)}) \right] \end{aligned}$$

#### **Classical Fisher's equation**

$$u_t = [Du_x]_x + \lambda_2 u - \lambda_3 u^2$$

Replacing the constant diffusion coefficient D by a density-dependent D(u) and assuming that the diffusivity depends linearly on density, namely  $D(u) = \lambda_0 u + \lambda_1$ , the **Generalized Fisher's equation** takes the form:

$$u_t = [(\lambda_0 u + \lambda_1) u_x]_x + \lambda_2 u - \lambda_3 u^2$$
(3)

$$u_x(a,t) = 0 , \ u_x(b,t) = 0$$
$$u(x,0) = f(x)$$

#### Biological invasion problems Generalized Fisher's equation

The linear operator of (3) is  $\mathcal{L}(u) = \lambda_1 \frac{\partial^2 u}{\partial x^2} + \lambda_2 u$ and the non linear is  $\mathcal{G}(u) = \lambda_0 u \frac{\partial^2 u}{\partial x^2} + \lambda_0 \left(\frac{\partial u}{\partial x}\right)^2 - \lambda_3 u^2$ , so equation (3) can take the form :

$$\frac{\partial u}{\partial t} = \mathcal{L}(u) + \mathcal{G}(u)$$

## Biological invasion problems Applying Hermite Collocation

The Hermite Collocation method seeks  $\mathcal{O}(h^4)$  approximations in the form:

$$U(x,t) = \sum_{j=1}^{N+1} \left[ a_{2j-1}(t)\phi_{2j-1}(x) + a_{2j}(t)\phi_{2j}(x) \right]$$

and if  $x \in I_j$  element we may write:

$$U(x,t) = \sum_{k=2j-1}^{2j+2} a_k(t)\phi_k(x)$$

Applying all interior elemental & boundary collocation equations in  $\mathcal{L}(u)$  is trivial that:

$$L(\mathbf{a}) = \lambda_1 C^{(2)} \mathbf{a} + \lambda_2 C^{(0)} \mathbf{a}$$

To express, now, the discrete operator of  $\mathcal{G}(u)$  in matrix form we will use the following propotition for the general nonlinear term:

$$\frac{\partial^m}{\partial x^m} U(x,t) \frac{\partial^n}{\partial x^n} U(x,t) = \left( C^{(m)} \mathbf{a} \right) \circ \left( C^{(n)} \mathbf{a} \right)$$

where, the symbol  $\circ$  denote the Hadamard matrix product. So, the discrete operator  $G(\mathbf{a})$  takes the form:

$$G(\mathbf{a}) = \lambda_0 \left( C^{(0)} \mathbf{a} \right) \circ \left( C^{(2)} \mathbf{a} \right) + \lambda_0 \left( C^{(1)} \mathbf{a} \right) \circ \left( C^{(1)} \mathbf{a} \right) - \lambda_3 \left( C^{(0)} \mathbf{a} \right) \circ \left( C^{(0)} \mathbf{a} \right)$$

Hence, equation (3) may be written as:

$$C^{(0)}\dot{\mathbf{a}} = L(\mathbf{a}) + G(\mathbf{a})$$
$$\dot{\mathbf{a}} = \tilde{L}(\mathbf{a}) + \tilde{G}(\mathbf{a})$$

$$u_t = [(1-u)u_x]_x + 2u - 2u^2 \quad , \qquad -5\pi/2 \le x \le 5\pi/2, \qquad 0 \le t \le T$$
$$u_x(\frac{-5\pi}{2}, t) = 0, \quad u_x(\frac{5\pi}{2}, t) = 0 \quad , \qquad u(x,0) = \frac{1}{3} \left[2 + \sin\left(-x\right)\right]$$

and admits the exact solution  $u(x,t) = \frac{1}{3} \left[ \frac{e^{-\iota}(3e^{2\iota}+1+2\sin(-x))}{e^{t}+e^{-t}} \right].$ 



19

|     | Error Norm $\mathcal{E}_{\infty}$ |          | Collocation's o.o.c |      | Time to reach $t = 2$ |       |
|-----|-----------------------------------|----------|---------------------|------|-----------------------|-------|
| N   | SSP(4,3)                          | IMEX     | SSP(4,3)            | IMEX | SSP(4,3)              | IMEX  |
| 32  | 1.53e-04                          | 1.55-04  | -                   | -    | 0.01                  | 0.06  |
| 64  | 9.85e-06                          | 9.86e-06 | 3.95                | 3.97 | 0.05                  | 0.22  |
| 128 | 6.20e-07                          | 6.19e-07 | 3.99                | 3.99 | 0.14                  | 0.92  |
| 256 | 3.88e-08                          | 3.85e-08 | 4.00                | 3.99 | 0.72                  | 4.42  |
| 512 | 2.56e-09                          | 2.55e-09 | 3.93                | 3.92 | 4.28                  | 23.63 |

# Numerical Results Model Problem I



## Numerical Results Model Problem II

$$\begin{aligned} u_t &= [Du_x]_x + u - u^2, \quad -5 \le x \le 5 \quad , \qquad 0 \le t \le T \\ u_x(-5,t) &= 0, \quad u_x(5,t) = 0 \quad , \qquad u(x,0) = f(x) \\ D &= \begin{cases} \gamma & , \quad x \in [-5,-3) \cup [2,5] \\ 1 & , \quad x \in [-3,2) \end{cases} \end{aligned}$$



|      | Error Norm $\mathcal{E}_{\infty}$ |          | Collocation's o.o.c |      | Time to reach $t = 2$ |       |
|------|-----------------------------------|----------|---------------------|------|-----------------------|-------|
| N    | DIRK                              | IMEX     | DIRK                | IMEX | DIRK                  | IMEX  |
| 80   | 7.13e-07                          | 9.39e-07 | -                   | -    | 0.18                  | 0.04  |
| 160  | 4.60e-08                          | 6.61e-08 | 3.95                | 3.82 | 0.58                  | 0.06  |
| 320  | 2.90e-09                          | 3.86e-09 | 3.98                | 4.09 | 3.27                  | 0.17  |
| 640  | 1.94e-10                          | 2.36e-10 | 3.89                | 4.02 | 19.80                 | 0.60  |
| 1280 | 1.74e-11                          | 1.47e-11 | 3.47                | 4.00 | 124.28                | 3.26  |
| 2560 | -                                 | -        | -                   | -    | 891.34                | 19.63 |

# Numerical Results Model Problem II



# Biological invasion problems (2+1) Dimensions

$$\begin{aligned} \frac{\partial u}{\partial t} &= \nabla \left[ D \nabla (u) \right] \quad , \quad u := u(x, y, t) \\ (x, y) &\in [a, b]^2 \quad , \quad 0 \leq t \leq T \\ u(x, y, 0) &= f(x, y) \quad , \quad \frac{\partial u}{\partial \eta} = 0 \end{aligned}$$



Figure : Stripes Problem (left) and Rectangular Problem (right).

## Biological invasion problems (2+1) Dimensions - Stripes

$$D = \begin{cases} \gamma & , \quad (x,y) \in [-4,-2] \times [-4,4] \\ 1 & , \quad (x,y) \in (-2,2) \times (-2,2) \\ \gamma & , \quad (x,y) \in [2,4] \times [-4,4] \end{cases}$$

Two dimensional Collocation matrices in Stripes problem can be formed as the cronecker product of 1D DHC and HC matrices. **System of ODEs:** 

$$\begin{pmatrix} \tilde{C}_x^{(0)} \otimes C_y^{(0)} \end{pmatrix} \dot{\mathbf{a}} = \left( D_x \tilde{C}_x^{(2)} \otimes C_y^{(0)} \right) \mathbf{a} + \left( D_x \tilde{C}_x^{(0)} \otimes C_y^{(2)} \right) \mathbf{a} A_{00} \dot{\mathbf{a}} = (A_{20} + A_{02}) \mathbf{a} A_{00} \dot{\mathbf{a}} = B \mathbf{a}$$

where,  $D_x = diag(\gamma, \dots, \gamma, 1, \dots, 1, \gamma, \dots, \gamma) \in \mathbb{R}^{N_x}$ 

## DIRK method for 2D Stripes Problem

| Ν    | Error Norm $\mathcal{E}_{\infty}$ | 0.0.C. | Time to reach $t = 1$ |
|------|-----------------------------------|--------|-----------------------|
| 64   | 3.61e-03                          | -      | 2.14                  |
| 128  | 1.44e-05                          | 7.96   | 7.86                  |
| 256  | 9.89e-07                          | 3.86   | 47.98                 |
| 512  | 6.31e-08                          | 3.96   | 330.72                |
| 1024 | 3.97e-09                          | 3.98   | 2604.38               |
| 2048 | -                                 | -      | 23836.24              |

# Biological invasion problems (2+1) Dimensions - Stripes



28

# Thank you!!