
Parallel Iterative Solution of the Hermite
Collocation Equations on GPUs
E. Mathioudakis, N. Vilanakis, E. Papadopoulou and Y. Saridakis

Abstract—We consider the computationally intense problem
of solving the large, sparse and non-symmetric system of equa-
tions arising from the discretization of elliptic Boundary Value
Problems (BVPs) by the Collocation finite element method
using Hermite bi-cubic elements. As the size of the problem
directly suggests the usage of parallel iterative methods, we
consider the implementation on multiprocessor shared memory
parallel architectures with Graphics Processing Units of the
non-stationary preconditioned Bi-Conjugate Gradient Stabi-
lized (BiCGSTAB) iterative method. To induce scalability to
our computation, we structure the Collocation matrix to a
particular line red-black ordered form, leading to the devel-
opment of a well-structured parallel algorithm for the iterative
method. The realization of the said algorithm took place on
a HP SL390 multiprocessor machine with Tesla M2070 GPUs.
Execution time measurements are used to reveal the efficiency
of our parallel implementation.

Index Terms—Collocation, BiCGSTAB, Shared Memory,
OpenMP, OpenACC, GPUs.

I. INTRODUCTION

COLLOCATION method is a high order accurate dis-
cretizer for BVPs modelling applications in several

fields of science and engineering (e.g. [1]). The method
approximates the solution of the problem avoiding nume-
rical integration and making readily available the values
of the solution function and its first derivatives at all grid
nodes. Thus the resulting linear system is large and sparse,
suggesting the usage of efficient iterative solvers [2], [3],
[4]. For realistic applications, where fine discretizations are
necessary, the realization of the method requires high perfor-
mance computing architectures. The resources for these com-
puting environments can include multi-core machines with
Graphic Processing Units (GPUs), which can accelerate the
performance. To take advantage of the increased computing
power capabilities GPUs induce to computers, an efficient
realization of a parallel algorithm for shared memory and
massively parallel architectures is needed.

These scientific issues have attracted the interest of sev-
eral researchers in the past and an important progress has
been made in the area of parallel iterative solution of the
collocation finite element method (e.g. [5], [6], [7], [8], [9],
[10]).

The aim of this work is the development of appropriate
parallel algorithms for the numerical treatment of the collo-
cation equations on GPU computational environments. The
paper is organized as follows: In Section II, the iterative

Manuscript received March 23, 2013; revised April 16, 2013.
This work was supported by EU (European Social Fund ESF) and Greek

funds through the operational program Education and Lifelong Learning of
the National Strategic Reference Framework (NSRF) - Research Funding
Program: THALIS.

All authors are with the Department of Sciences, Technical University of
Crete, University Campus, 73132 Chania, Crete, Greece – Corresponding
author’s e-mail: manolis@science.tuc.gr.

solution for collocation linear system of algebraic equations
arising from the application of finite element method based
on a Hermite bi-cubic elements is briefly described. Section
III presents the basic features for developing a parallel
algorithm for multiprocessor with GPUs machines for the
BiCGSTAB iterative solving procedure. Finally, in Section
IV, we present the numerical results from the performance
evaluation of the parallel algorithm.

II. RED BLACK COLLOCATION LINEAR SYSTEMS

Let us consider the modified Helmholtz problem{
∇2u(x, y)− λu(x, y) = f(x, y) , (x, y) ∈ Ω

u(x, y) = g(x, y) , (x, y) ∈ ∂Ω
(1)

with λ ≥ 0 on the rectangular domain Ω ≡ (0, 1) × (0, 1)
as our model problem. Assuming a uniform partition of
the intervals Ix = Iy = [0, 1] into ns subintervals Ixm =
Iym , m = 1 , . . . , ns which generates a uniform grid
with spacing h = 1

ns
and nodal coordinates (xi, yj), where

xi = (i − 1)h and yj = (j − 1)h, i, j = 1 , . . . , (ns + 1).
The Hermite Bi-Cubic finite element approximation seeks an
approximate solution ũ(x, y) in the form

u(x, y) ∼ ũ(x, y) =
ñ∑

i=1

ñ∑
j=1

αi,jφi(x)φj(y) , (2)

where ñ = 2(ns + 1). The basis functions φi(x) and
φj(y) are the known one dimensional piecewise Hermite
cubic polynomials [11]. Based, now, on the basic properties
of Hermite basis functions, one can easily verify that the
following four unknowns

a2i−1,2j−1 = ũ(xi, yj)
a2i−1,2j = h ∂

∂y ũ(xi, yj)

a2i,2j−1 = h ∂
∂x ũ(xi, yj)

a2i,2j = h2 ∂2

∂x∂y ũ(xi, yj)

(3)

are associated with the mesh point (xi, yi). With the im-
position of boundary conditions 8ns + 4 unknowns, asso-
ciated with nodes on the boundary ∂Ω, can be determined
beforehand. Therefore collocation equations needed for the
determination of the remaining n = 4n2s unknowns are then
constructed by forcing the approximate solution ũ(x, y) to
satisfy the BVP in n interior collocation points. These are
the four Gaussian points in each of the n2s elements Iij .
Since there is an one-to-one correspondence between collo-
cation points and equations, a numbering of the equations
is produced when we number the collocation points while
a numbering of the unknowns is readily available when
we number the unknowns associated with each node. This
procedure results to a linear system

Ax = b , (4)

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Fig. 1. Numbering of unknowns and equations for ns = 4.

where A is the n× n Collocation coefficient matrix and

x = [x1 x2 · · · xn]T ≡ [α1,1 · · · αñ,ñ]T

is the unknown vector, with n = 4n2s.
To increase parallelism, we number unknowns and equa-

tions in red-black ordered fashion (cf. [7]) depicted in Fig.
1 for ns = 4. Small numbers represent the numbering of
unknowns per node while circled numbers represent the
numbering of the equations per element. Small circles on
the boundary indicate unknowns that have been evaluated
from the boundary conditions. In Fig. 2 the structure of the
resulted collocation matrix after the application of a similar-
ity transformation as in [7], [8] is shown schematically. One
can easily verify that the collocation matrix takes its 2-cyclic
normal form

A =

[
DR HB

HR DB

]
, (5)

where DR and DB are non-singular block diagonal matrices.
For the case of ns = 2p they have the form

DR = diag[A2 2A1 2A2 · · · 2A1 2A2 −A2︸ ︷︷ ︸
2p−blocks

] , (6)

DB = 2 diag[A1 A2 · · · A1 A2︸ ︷︷ ︸
2p−blocks

] (7)

HR =



R1 R2

R3 R1 R2

. . .
. . .

. . .
. . .

. . .
. . .

R3 R1 R2

R3 R̂1


(8)

HB =



B1 B2

B3 B1 B2

. . .
. . .

. . .
. . .

. . .
. . .

B3 B1 B2

B3 B1


(9)

Fig. 2. Structure of the Collocation Matrix for ns = 4.

where

R1 =

[
A4 A3

−A4 A3

]
, R̂1 =

[
A4 −A4

−A4 −A4

]
,

R2 = −
[
A4 0
A4 0

]
, R3 =

[
0 A3

0 −A3

]
,

and

B1 =

[
A3 −A4

A3 A4

]
,

B2 =

[
0 0
A3 −A4

]
, B3 = −

[
A3 A4

0 0

]
.

The block form of the above matrices involve four 2ns×2ns
pentadiagonal basic real matrices Ai for i = 1, . . . , 4 [10].

In our earlier work [8], [9], [12], [10] we have successfully
solved the red-black collocation linear system using the SOR
and preconditioned Krylov subspace iterative methods based
in the following splitting of the matrix

A = DA − LA − UA , (10)

where

DA =

[
DR O
O DB

]
, LA =

[
O O
−HR O

]
,

UA =

[
O −HB

O O

]
, (11)

and for the other members of the collocation linear system
we have assumed the conformal partitioning of the vectors
x and b into

x =

[
xR

xB

]
and b =

[
bR
bB

]
. (12)

In these works, as well as in [6], the BiCGSTAB iterative
method, preconditioned by either the Symmetric Gauss-
Seidel (SGS) or the Gauss-Seidel (GS) schemes, proved to

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

converge faster than SOR and any other Krylov subspace
method.

To increase the scalability, as well as to reduce the
execution time, of the preconditioned BiCGSTAB method,
we introduce the following two sided preconditioning

M−1
1 AM−1

2 M2x = M−1
1 b , (13)

where M1 is the Gauss Seidel’s iteration matrix based on the
matrix splitting in (10)

M1 = DA − LA = DA(I −D−1
A LA) (14)

and
M2 = I −D−1

A UA . (15)

The collocation linear system takes the following form[
I O
O S

] [
xR +D−1

R HRxB

xB

]
=

[
b̂R
b̂B

]
, (16)

where
S = DB −HRD

−1
R HB (17)

is the Schur complement of the collocation matrix with
respect of DB and

b̂R = D−1
R bR and b̂B = bB −HRb̂R . (18)

The detailed computation involved in the equations above
can be described by means of the following algorithm :

Algorithm for Schur complement collocation equations

S1: Solve DRb̂R = bR

S2: Evaluate b̂B = bB −HRb̂R

S3: Solve with BiCGSTAB S xB = b̂B

S4: Evaluate x̂B = HBxB

S5: Solve DRx̂R = x̂B

S6: Evaluate xR = b̂R − x̂R

Obviously, the dominant operations of the algorithm are
the matrix vector multiplication with the block diagonal
matrices DR, DB , HB and HR, followed by the direct
solution of linear systems involving matrices DR and DB .
Said operations, in these red and black computation cycles,
require the design of efficient algorithms for shared memory
architectures.

III. PARALLEL ALGORITHM FOR COLLOCATION

The architecture of the parallel system available, along
with the number of processors, are the most important
factors affecting the ordering and the partition of the whole
computation of a parallel algorithm. Our model is a shared
memory system, consisting of a few powerful processor cores
for the host computer and a few hundreds for the graphics
processing unit. GPU cores can perform only basic arithmetic
operations and they have their own memory. As such, data
and computation partitioning must take into consideration
the particular architecture at hand and, at the same time,
keep all cores busy during the whole computation. This no
idle core model requires well balanced computational and
memory communication loads. An efficient way to carry

Fig. 3. Assigning collocation unknowns into threads for ns = 4.

out the demanding task of assigning threads to cores is
by considering at first a virtual architecture with unlimited
number of cores. If now one takes also into consideration the
requirement that these threads must be data independent with
minimized memory communication, and that the number
of subintervals ns = 2p of the discretization in both x
and y directions is even, it can be easily observed that the
appropriate allocation scheme requires the assignment of one
core thread for each one of the 2p+1 vertical grid lines. This
is shown schematically in Fig.3 for ns = 4.

Moreover, odd core threads represent red grid lines while
even threads represent black grid lines and due to the 2p-
block partitioning of all vectors participating in the compu-
tation, it becomes clear that each one of the odd threads
V2i−1 , i = 1, . . . , p + 1 , has being assigned with the task
of determining the solution subvectors t2i−2 and t2i−1 while
each one of the even threads V2i , i = 1, . . . , p , has being
assigned with the task of determining the solution subvectors
t2p+2i−1 and t2p+2i. The irregularity appeared in threads V1
and V2p+1 is due to the boundary conditions.

In the parallel algorithm all basic linear algebra vector
operations such as inner products, vector additions and
multiplications with scalars, can be executed in parallel based
on the above 2p-block partitioning of all vectors. These
operations are performed in parallel since there is no data
dependence from one thread to the other.

According to the above scheme of data mapping into
threads, the parallel procedures have no data dependency
for all matrix vector multiplications, and the direct linear
system solutions for the red and black cycles of computation.
The following parallel algorithms integrate all the above
properties for the evaluation of the arbitrary vector t of length
4ns

2 .

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

Red Computation Cycle

C$ OMP PARALLEL DO DEFAULT(SHARED)

do i = 0 to p

V2i+1 computes t2i, t2i+1

enddo

C$ OMP END PARALLEL DO

Black Computation Cycle

C$ OMP PARALLEL DO DEFAULT(SHARED)

do i = 1 to p

V2i computes t2p+2i, t2p+2i−1

enddo

C$ OMP END PARALLEL DO

In the above algorithms, the CPU thread implementation
can be realized by using efficient procedures from existing
numerical libraries [13]. For example, in the case of the
forward and backward substitutions, during the block direct
solution of the linear systems with matrices DR and DB , the
appropriate procedure from Lapack library is chosen, while
for the matrix vector multiplication, involving the matrices
HB and HR, the procedure from BLAS library can be used.
However, if one wants to exploit the special structure of the
matrices involved in the computations to optimize the GPU
thread implementation, it is necessary to design efficient
algorithms for the massively parallel model.

The serial nature of the computations involved during the
forward and backward substitutions of linear system solu-
tions, combined with the fact of GPU memory limitations,
directly imply that the solution of the linear systems during
the red and black cycles, with coefficient matrices DR and
DB respectively, have to be performed from the computer
host threads.

On the other hand, the independence of the data involved
during the matrix-vector basic linear algebra operations,
combined with the fact that the hundreds of GPU cores are
organized in computational groups and are able to perform
simultaneously - via the SIMD programming model - basic
arithmetic operations extremely faster than the computer host
processors, directly imply that the matrix-vector multiplica-
tion subroutines during the red and black cycles involving the
HR and HB block matrices are suitable for GPU implemen-
tations. Further improvement is achieved by taking advantage
of HR’s and HB’s block structure, from relations (8) and
(9) respectively, which is based on two only pentadiagonal
matrices A3 and A4 of order 2ns.

The above are implemented in the parallel algorithm that
follows and describes in detail the black cycle for t = HBz
GPU matrix vector multiplication.

Black GPU Computation Cycle

!$ACC DATA COPYIN(z) CREATE(temp) COPYOUT(t)
!$ACC KERNELS
!$ACC LOOP INDEPENDENT

do k = 1 to ns − 3 with step 2
k1 = (k − 1)2ns , k2 = k2ns
k3 = (k + 1)2ns , k4 = (k + 2)2ns

!$ACC LOOP INDEPENDENT
do i = 1 to 2ns
t(k2 + i) = A3(3, i)z(k1 + i) +A4(3, i)z(k2 + i)

enddo
!$ACC LOOP INDEPENDENT

do i = 2 to 2ns
t(k2 + i− 1) = t(k2 + i− 1)+

A3(2, i)z(k1 + i− 1) +A4(2, i)z(k2 + i)
enddo

!$ACC LOOP INDEPENDENT
do i = 1 to 2ns − 1
t(k2 + i+ 1) = t(k2 + i+ 1)+

A3(4, i)z(k1 + i) +A4(4, i)z(k2 + i)
enddo

!$ACC LOOP INDEPENDENT
do i = 1 to 2ns − 2
t(k2 + i) = t(k2 + i)+

A3(1, i+ 2)z(k1 + i+ 2)+
A4(1, i+ 2)z(k2 + i+ 2)

enddo
!$ACC LOOP INDEPENDENT

do i = 1 to 2ns − 2
t(k2 + i+ 2) = t(k2 + i+ 2)+

A3(5, i)z(k1 + i) +A4(5, i)z(k2 + i)
enddo

!$ACC LOOP INDEPENDENT
do i = 1 to 2ns
t(k3 + i) = A3(3, i)z(k3 + i)−A4(3, i)z(k4 + i)

enddo
!$ACC LOOP INDEPENDENT

do i = 2 to 2ns
t(k3 + i− 1) = t(k3 + i− 1)+

A3(2, i)z(k3 + i− 1)−A4(2, i)z(k4 + i)
enddo

!$ACC LOOP INDEPENDENT
do i = 1 to 2ns − 1
t(k3 + i+ 1) = t(k3 + i+ 1)+

A3(4, i)z(k3 + i)−A4(4, i)z(k4 + i)
enddo

!$ACC LOOP INDEPENDENT
do i = 1 to 2ns − 2
t(k3 + i) = t(k3 + i)+

A3(1, i+ 2)z(k3 + i+ 2)−
A4(1, i+ 2)z(k4 + i+ 2)

enddo
!$ACC LOOP INDEPENDENT

do i = 1 to 2ns − 2
t(k3 + i+ 2) = t(k3 + i+ 2)+

A3(5, i)z(k3 + i)−A4(5, i)z(k4 + i)
enddo

!$ACC LOOP INDEPENDENT
do i = 1 to 2ns
temp(i) = t(k3 + i)

enddo
!$ACC LOOP INDEPENDENT

do i = 1 to 2ns
t(k3 + i) = t(k3 + i)− t(k2 + i)

enddo
!$ACC LOOP INDEPENDENT

do i = 1 to 2ns
t(k2 + i) = t(k2 + i) + temp(i)

enddo
enddo

!$ACC END KERNELS
!$ACC END DATA

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

We point out that, due to limited space, the part of the
algorithm corresponding to the first and last block rows of
the HB matrix is not included. The GPU realization of the
red computational cycle can be described by an analogous
algorithm.
MAPPING ONTO A FIXED SIZE ARCHITECTURE

When implementing the algorithm on a fixed core parallel
system, consisting of P cores, groups of threads have to
be mapped onto the GPU and host processor cores. In this
section we describe the mapping process in the case of ns =
kP , since simple adjustments can be made to cover all other
cases. In this particular case, however, the computational cost
is uniform for all cores. The mapping mechanism we shall
follow is that of associating k consecutive threads to each
one of the Pj , (j = 1, . . . , P) cores of the fixed size
architecture and is shown schematically bellow.

y y • • • y

~

V(j−1)k+1 V(j−1)k+2 Vjk

Pj

?

It becomes obvious, following the above mapping, that
with each Pj core we associate the k core threads
V(j−1)k+1, . . . , Vjk.

Observe that :
• Whenever k is even the indices (j − 1)k + 1 and jk

satisfy (j − 1)k + 1 is odd while jk is even. Hence
the core threads V(j−1)k+1 and Vjk are respectively red
(odd) and black (even) threads and therefore schemati-
cally we have:

y y • • • y y

~

Red Black Red Black

Pj

?

Thus, with core Pj we associate the k red vectors
tl , l = (j − 1)k, . . . , jk − 1 and the k black vectors
t2p+l , l = (j − 1)k + 1, . . . , jk .

• Whenever k is odd the indices (j − 1)k + 1 and jk
satisfy (j− 1)k+ 1 and jk are odd when j is odd
while (j − 1)k+ 1 and jk are even when j is even.
Hence the threads V(j−1)k+1 and Vjk are both red (odd)
when j is odd while they are both black (even) when j
is even and therefore schematically we have:

x x • • • x x x
~

Red Black Red Black Red

Pj , j is odd

?

x x • • • x x x
~

Black Red Black Red Black

Pj , j is even

?

Thus, when j is odd, with core Pj we associate the
k+1 red vectors tl , l = (j−1)k, . . . , jk and the k−1
black vectors t2p+l , l = (j − 1)k + 1, . . . , jk − 1 ,
while, when j is even, with core Pj we associate the
k− 1 red vectors tl , l = (j − 1)k+ 1, . . . , jk− 1 and
the k − 1 black vectors t2p+l , l = (j − 1)k, . . . , jk .

All the above are used to carry out each step of the following
Schur complement algorithm:

Parallel Algorithm for Schur comp. collocation equations

S1: Solve in parallel on host DRb̂R = bR

S2: Send matrices A3 and A4 to GPU
S3: Evaluate in parallel on GPU b̂B = bB −HRb̂R

S4: Solve in parallel with BiCGSTAB S xB = b̂B

S5: Evaluate in parallel on GPU x̂B = HBxB

S6: Solve in parallel on host DRx̂R = x̂B

S7: Evaluate in parallel on host xR = b̂R − x̂R

The parallel algorithm’s computations in step S4 for the
BiCGSTAB method are performed on the host except for
the two matrix vector multiplications at each iteration step
involving the Schur complement matrix S. More specifically,
the computation in step S4, involving the matrices HR and
HB as multipliers, is executed on the GPU as follows:

Evaluation of t = Sp

S1: Send p from host to GPU

S2: Evaluate in parallel on GPU t = HB p

S3: Send t from GPU to host

S4: Solve in parallel on host DRs = t

S5: Send s from host to GPU

S6: Evaluate in parallel on GPU q = HR s

S7: Send q from GPU to host

S8: Evaluate in parallel on host t = DB p − q

The communication cost for data movement between host
and GPU memory is the cost for transferring two vectors of
size 2n2s in each direction. Thus, the communication cost for
every BiCGSTAB iteration step, is the cost of transferring
eight vector of size 2n2s in each direction, since matrices A3

and A4 are moved and stored in the GPU memory once at
the beginning of the solution process.

IV. REALIZATION ON A GPU SHARED-MEMORY
PARALLEL COMPUTER

HP’s SL390s G7 is a shared memory architecture machine,
consisting of a 6-core Xeon X5660@2.8GHz type processor
with 12 MB Level 3 cache memory. The total memory is
24 GB and the operating system is Oracle Linux version
6.2. This machine has also a Fermi edition Tesla M2070

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

GPU [14] connected via a PCI-e gen2 slot. The GPU has
6GB of memory and 448 cores on 14 multiprocessors. The
application is developed in double precision Fortran code
using OpenMP [15], [16] and OpenACC [17] standards
with PGI’s compilers version 12.9 [18]. For the basic linear
algebra operations subroutines from scientific libraries BLAS
and LAPACK [19] are considered, as they are utilized for this
specific platform.

For the implementation of the above parallel algorithm
the test Dirichlet Helmholtz problem, which accepts the
following exact solution

u(x, y) = 10 φ(x) φ(y) , φ(x) = e−100(x−0.1)2(x2 − x),

with λ = 1 was solved. The following Table I presents
the behaviour of the method regarding convergence iteration
steps and linear system error L2-norm for discretization sizes
up to 2048 finite elements in each direction.

Table I: Iterations and error L2-norm
ns Iterations ||b−Ax(m)||2
256 294 6.06e-11
512 589 2.85e-11
1024 1161 1.39e-11
2048 3726 9.59e-12

Focusing now, on the performance of our parallel algorithm
and its implementation on the given parallel environment, we
have collected time measurements using several execution
parameters, such as the number of host cores and GPU
enabling. Table II below summarize these execution time
measurements in seconds each of one for different problem
size starting from ns = 256 up to ns = 2048 discretizations.

Table II: Execution time for Host/Accelerator devices
ns = 256 CPU GPU + CPU

CPU cores Total Time Total Time
1 12.24 11.18
2 8.12 7.53
4 4.87 5.63

ns = 512 CPU GPU + CPU
CPU cores Total Time Total Time

1 88.83 71.25
2 52.94 46.59
4 34.25 32.63

ns = 1024 CPU GPU + CPU
CPU cores Total Time Total Time

1 750.35 549.82
2 448.76 352.95
4 283.14 250.64

ns = 2048 CPU GPU + CPU
CPU cores Total Time Total Time

1 9176 6770
2 5001 4387
4 2999 2839

In the following last Table III the execution time in more
detail for the cases involving the GPU can be found. The
time for data transferring from CPU to GPU and vice versa
for all discretizations is presented. The computation time for
every available CPU core number is also measured.

Table III: Multi-core execution time
ns GPU - CPU Computation Time

Comm. Time 1 Core 2 Cores 4 Cores
256 1.52 9.66 6.01 4.11
512 6.81 64.44 39.78 25.82
1024 44.3 505.5 308.6 206.3
2048 541 6229 3846 2298

We have to mention that the communication time between
CPU and GPU is independent of the number of the CPU
cores, because in our algorithm the transferring phase is per-
formed by one thread due to the computation load balancing.
This avoids the data bottleneck movements between multiple
CPU threads over the PCI slot of the machine.

V. CONCLUSIONS

A new parallel algorithm for implementing the
BiCGSTAB iterative method for solving the Hermite
Collocation equations, arising from elliptic PDEs, has been
developed and realized on multi-core machines with GPUs.
The performance of the algorithm is affected by the size of
the problem and the number of CPU cores. A performance
acceleration of up to almost 30% is observed.

ACKNOWLEDGMENT

The present research work has been co-financed by the European
Union (European Social Fund ESF) and Greek national funds
through the Operational Program Education and Lifelong Learning
of the National Strategic Reference Framework (NSRF) - Research
Funding Program: THALIS. Investing in knowledge society through
the European Social Fund.

REFERENCES

[1] C. E. Houstis, E. N. Houstis, and J. Rice, “Pde computations: Methods
and performance evaluation,” Par. Comp., vol. 5, pp. 141–163, 1997.

[2] R. Varga, Matrix Iterative Analysis. New York: Springer Verlag, 2000.
[3] H. der Vorst, “Bi-cgstab : A fast and smoothly converging variant

of bi-cg for the solution of nonsymmetric linear systems,” SIAM J.
Sci.Stat.Comp., vol. 13, pp. 631–644, 1992.

[4] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[5] C.C.Christara, “Parallel solvers for spline collocation equations,” Ad-

vances in Engineering Software, vol. 27, pp. 71–89, 1996.
[6] S.H.Brill and G.F.Pinder, “Parallel implementation of the bi-cgstab

method with block red-black gauss-seidel preconditioner applied to
the hermite collocation discretization of partial differetial equations,”
Parallel Computing, vol. 28, pp. 399–414, 2002.

[7] E. Mathioudakis, E. Papadopoulou, and Y. Saridakis, “Iterative solu-
tion of elliptic collocation systems on a cognitive parallel computer,”
Computers and Maths with Appl., vol. 48, pp. 951–970, 2004.

[8] ——, “Mapping parallel iterative algorithms for pde computations on a
distributed memory computers,” Parallel Algorithms and Applications,
vol. 8, pp. 141–154, 1996.

[9] ——, “Bi-cgstab for collocation equations on distributed memory par-
allel computers,” Numerical Mathematics and advanced applications
- ENUMATH 2001, Springer, pp. 957–966, 2003.

[10] E. Mathioudakis and E. Papadopoulou, “Grid computing for the bi-
cgstab applied to the solution of the modified helmholtz equation,” Int.
J. App. Maths and comp. sciences, vol. (4),3, pp. 179–184, 2007.

[11] T. Papatheodorou, “Block aor iteration for nonsymmetric matrices,”
Math. Comp., vol. (41),164, pp. 511–525, 1983.

[12] E. Mathioudakis, E. Papadopoulou, and Y. Saridakis, “Preconditioning
for solving hermite collocation by the bi-cgstab,” WSEAS Trans. on
Mathematics, vol. (5),7, pp. 811–816, 2006.

[13] J. Dongarra, I. Duff, D. Sorensen, and H. van der Vorst, Numerical
Linear Algebra for high-performance computers. Phil.: SIAM, 1998.

[14] Nvidia, http://www.nvidia.com/object/tesla-servers.html.
[15] C. Rohit, Parallel programming with OpenMP. M. K., 2001.
[16] OpenMP, http://www.openmp.org.
[17] OpenACC, http://www.openacc.org.
[18] PGI, http://www.pgroup.com.
[19] NetLib, http://www.netlib.org.

Proceedings of the World Congress on Engineering 2013 Vol II,
WCE 2013, July 3 - 5, 2013, London, U.K.

ISBN: 978-988-19252-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

WCE 2013

