ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Implementation of a Distributed System for the Solution of MultiDomain / MultiPhysics Problems

Ανάπτυξη Κατανεμημένου Συστήματος για Επίλυση Προβλημάτων Πολλαπλών - Χωρίων / Πολλαπλών - Φυσικών Μοντέλων

Διπλωματική Εργασία

Κωνσταντίνος Κ. Χαλκιάς

Επιβλέποντες καθηγητές: Παναγιώτα Τσομπανοπούλου Επίκουρη Καθηγήτρια Π.Θ.

> Εμμανουήλ Βάβαλης Καθηγητής Π.Θ.

Βόλος, Ιούλιος 2013

© 2013 – All rights reserved

...a few words

- ✤ The modeling and simulation of complex physical systems often involves many components because
 - 1. the physical system itself has components of differing natures,
 - 2. parallel computing strategies require many (somewhat independent) components, and
 - 3. existing simulation software implies only to simpler geometrical shapes and physical situations.
- & We propose *IRTool*, a simulation environment which
 - 1. solves MultiDomain/MultiPhysics problems using relaxation methods
 - 2. has wide application,
 - 3. has increased flexibility,
 - 4. has high performance,
 - 5. offers parallelism and
 - 6. reuses existing software

Contents

- Computational approaches simulating large scientific problems
- Related Works
- Domain Decomposition
- Interface Relaxation (IR)
- & GEO Method
- ► IRToolBox Implementation
- FIRToolBox GUI
- User Guide / Numerical Experiments
- & Conclusions

Computational approaches simulating large scientific problems

• Simple Domain Decomposition

- 1. discretization of the geometrical domain using grids or meshes to create a large discrete problem
- 2. grids or meshes are then partitioned to create a set of inter-connected discrete problems
- 3. solves a boundary value problem by splitting it into smaller boundary value problems on subdomains
- 4. iterates to coordinate the solution between adjacent subdomains.
- + problems on the subdomains are independent
- + suitable for parallel computing
- + Overlapping / non overlapping subdomains
- one or few unknowns per subdomain
- typically used as pre-conditioners

Computational approaches simulating large scientific problems

• Schwarz Splitting

- 1. decomposes the geometrical domain into components with small overlap
- 2. each component can then be solved independently
- 3. the Schwarz alternating method is applied iteratively to compute the global solution
- 4. iterates to coordinate the solution between adjacent subdomains.
- + problems on the subdomains are independent
- + suitable for parallel computing
- overlapping creates a serious complication in the Schwarz method
- Discovery of non overlapping methods

Computational approaches simulating large scientific problems

• *interface Relaxation*

• ★ A complex physical phenomenon consists of a collection of simple parts with each one of them obeying a single physical law locally and adjusting its interface conditions with neighbors.

~ Southwell 1930

- IR Procedure
 - 1. Guess solution values (and derivatives if needed) on all subdomain interfaces
 - 2. Solve all single PDEs exactly and independently on all the subdomain with these values as boundary conditions.
 - 3. Compare and improve the values on all interfaces using a relaxer
 - 4. Return to Step 2 until satisfactory accuracy is achieved.
 - + Problems on the subdomains are independent
 - + Suitable for parallel computing
 - + Maximum Generality
 - + Flexibility

• **⊱** · IR Mechanism

1. This domain is partitioned into p open subdomains Ω_i , i=1,...,p such that $\Omega = \bigcup_{i=1}^p \overline{\Omega_i} \setminus \partial \Omega$ and $\bigcap_{i=1}^p \Omega_i = \emptyset$. 2. Replace (3.1) with

$$D_{i}u = f_{i} \text{ in } \Omega_{i},$$

$$G_{ij}u = 0 \text{ on } (\partial\Omega_{i} \cap \partial\Omega_{j}) \setminus \partial\Omega \quad \forall j \neq i, \quad B_{i}u = c_{i} \text{ on } \partial\Omega_{i} \cap \partial\Omega \qquad (3.2)$$

GEO Method

• for $k = 0,1,2, \ldots$

$$- ui^{(k+1)} = \frac{u_L^{(k)} + u_R^{(k)}}{2} - \frac{w_L w_R}{w_L + w_R} \left(\frac{\partial u_L^{(k)}}{\partial x} - \frac{\partial u_R^{(k)}}{\partial x}\right) \text{ on each interface}$$

 $- u^{(k+1)} = solve_pde(ui^{(k+1)})$ in each subdomain

- One step method
- U: solution
- S: slope
- m: needed correction
- •w: width

• One can intuitively view this as grabbing the function U at the I and stretching it up by m until its derivative becomes continuous

Related Work

• SciAgent

- Agent Based Framework
- C & Java
- Parallelism of the Interface Relaxation Methods on heterogenous workstations

IRToolBox Implementation

- Matlab's PDETool as "backbone".
 - + Flexible for the study and solution of PDE's.
 - + Faces multi-domain problems at the linear algebra level of study
 - + Open Source code for further development
 - Unable to solve multiDomain / multiPhysics problems with IR Methods
 - Interfaces cannot be treated properly and cannot be treated by other methods
 - Unable to treat each subdomain separately

IRToolBox Implementation

• ⊱ IRTool

- + Uses existing of wide use scientific software
- + Deals with the interface segments
- + Treats each subdomain independently
- + Solves the global problem by contemplating parameters as
 - interface relaxation methods
 - initial guesses on the interface segments
 - tolerance (convergence).
 - all the parameters for the PDE problems

IRTool GUI

- Conforms to common pull-down menu standards
- Menu items followed by a right arrow lead to a submenu
- Menu items followed by an ellipsis lead to a dialog box
- Stand-alone menu items lead to direct action
- lcon buttons for quick and easy access
- Keyboard accelerators

Global Window

• & Global Geometry is drawn

O O IRTool ~ Global Window ~ [Untitled] File Edit Options Draw Boundary PDE Mesh Solve Plot Interface Relavation Window Help							
				neric Scalar	\$	X: -0.5	Y: 0.8
Set formula:		2. 2. 2. 2.	r. r. s				
0.8							
0.6							
0.4							
0.2							
0							
-0.2							
-0.4							
-0.6							
-0.8							
-1							-
-1.5	-	-0.5	U	0.3	ə I	I.	2
In	fo: Push to initialize mesh.						Exit

File Menu

Edit Menu

Options Menu

File	Edit	Options Draw Boundary
s	+ Set formula	Grid Grid Spacing Snap
		Axes Limits Axes Equal
		Turn off Toolbar Help
		Zoom
		Application ►
		Refresh

Draw Menu

Boundary Menu

PDE Menu

Mesh Menu

User Guide / Numerical Experiments

- *E*·<u>Uniform Problem</u>
 - Elliptic problem

$$Lu(x,y) \equiv -\nabla^2 u(x,y) + \gamma^2 u(x,y) = f(x,y), \ (x,y) \in \Omega$$
$$u(x, y) = u^b(x, y), \ (x, y) \in \partial\Omega,$$

• The true solution u(x,y) is

 $u(x,y) = e^{y(x+4)}x(x-1)(x-0.9)y(y-0.5).$

•Geometry

•Three domains with interfaces on $x_1 = 1/3$ and $x_2 = 2/3$.

•Mesh Parameter

•Hmax =0.05

•Interface parameter

•omega is 0.03 and 0.04 for the first and second interface respectively.

• [Initialization of IRToolbox]

1. Type "irtool" in Matlab's command window.

2. Global Window Opens

• Draw Mode

1. We can draw the global geometry

• Decompose Global Geometry to Subdomains

• ► Boundary Mode (1/2) 1. Choose Boundary Mode on Each Subdomain

• Boundary Mode (2/2)

- 1. Define Boundary conditions
 - The true solution u(x,y) is

	click on			
Boundary condition equation:	h.	Boundary Conc	dition	- boundaries
Condition type:	Coefficient	Value	Description	
Neumann	g	0		
 Dirichlet 	q	0		
	h r	1 exp(y.*(x+4)).*x.*(x-1).*(x9)).*y.*(y5)	
	ОК		Cancel	

Define Interface Relaxation Conditions
Omega is 0.03 & 0.04 on the two interfaces

	Intearface Relaxation Cond	lition	
Geo			
Coefficient Initial Condition	Value 4135.5'y-6077.6 0 0.03_	Description	
ОК Geo	Intearface Relaxation Condi	Cancel	
Coefficient Initial Condition	Value 3347.6*y-4936.1 0 0.04	Description	
	Geo Coefficient Initial Condition W P OK Geo Coefficient Initial Condition I w V	Geo Coefficient Value Initial Condition 4135.5'y-6077.6 I 0 W 0.03 P 0 OK Coefficient Value Intearface Relaxation Cond Geo Coefficient Value Initial Condition 3347.6'y-4936.1 I 0 w 0.04	Geo Description Initial Condition 4135.5'y-6077.6 Description I 0 Image: Condition Image: Condition W 0.03 Image: Condition Image: Condition OK Cancel Image: Condition Image: Condition Geo Image: Condition Image: Condition Image: Condition Geo Coefficient Value Description Initial Condition 3347.6'y-4936.1 Image: Condition Image: Condition W 0.04 Image: Condition Image: Condition Image: Condition

Double click on interfaces

Double

• PDE MODE 1. Choose PDE Specification from PDE Menu

2. Enter PDE parameters for each subdomain $Lu(x,y) \equiv -\nabla^2 u(x,y) + \gamma^2 u(x,y) = f(x,y), (x,y) \in \Omega$ $u(x, y) = u^b(x, y), (x, y) \in \partial\Omega$

000			PDE Specification	
Equation:	-div(c*grad(u))+a*u=f			
Type of PDE:		Coefficient	Value	
• Elliptic		с	1.0	
Parabolic		а	2	
Hyperbolic		f	exp(y.*(x+4)).*x.*(x-1).*(x-7).*y.*(y5)	
Eigenmodes		d	1.0	
		ок		Cancel

• <u>*</u><u>Mesh Mode</u>

- 1. Enter Mesh parameters
 - Hmax = 0.05 on each subdomain

O O Mesh Parameters	
Initmesh parameters	
Maximum edge size:	
0.05	
Mesh growth rate:	
1.3	
🗹 Jiggle mesh	
Jigglemesh parameters	
Jiggle mode:	
optimize mean	\$
Number of jiggle iterations:	
Refinement method:	
regular	÷
OK Cancel	

• Specify Interface Relaxation Method parameters

- Number of iterations =20
- Maximum Error = .5e-6

• Solve MultiPDE

1. Choose Solve MyltiPDE from the Interface Relaxation Menu

Conclusions

- Our approach enjoys the following approaches:
 - 1. Problem simplification.
 - Simpler local physical rules acting on simpler geometries.
 - convenient abstraction & closer to real world.
 - 2. Reduction in software development time.
 - Reuse of legacy scientific software.
 - 3. Numerical efficiency.
 - Use the most appropriate numerical method for each particular subproblem.

Questions?

Thank You