
University of Thessaly

Master Thesis

Optimizing memory management on
heterogeneous systems using polyhedral,

compile-time techniques

Author:

Vassilis Vassiliadis

Supervisor:

Christos D. Antonopoulos,

Nikolaos Bellas, Panayiotis

Bozanis

A thesis submitted in fulfilment of the requirements

for the degree of Master

in the

Department of Electrical and Computer Engineering

University of Thessaly

November 2013

http://www.inf.uth.gr
Research Group Web Site URL Here (include http://)
http://www.inf.uth.gr

Declaration of Authorship

I, Vassilis Vassiliadis, declare that this thesis titled, ’Optimizing memory management

on heterogeneous systems using polyhedral, compile-time techniques’ and the work pre-

sented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“Thanks to my solid academic training, today I can write hundreds of words on virtually

any topic without possessing a shred of information, which is how I got a good job in

journalism.”

Dave Barry

ΠΑΝΕΠΙΣΤΉΜΙΟ ΘΕΣΣΑΛΙΑΣ

Βελτιστοποίηση διαχείρισης μνήμης σε ετερογενή συστήματα με χρήση πολυεδρικών τεχνικών κατά το χρόνο
μεταγλώττισης

Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Πανεπιστήμιο Θεσσαλίας

Διπλωματική Διατριβή

Η μέθοδός μας αφορά τεχνικές που εκτελούνται κατά τη μεταγλώττιση βασισμένες στο
πολυεδρικό μοντέλο με σκοπό την εκτίμηση του προτύπου προσπέλασης μνήμης εφαρμογών
ανεπτυγμένες χρησιμοποιώντας το προγραμματιστικό μοντέλο OpenCL. Έτσι, κατά τη διάρκεια
της μεταγλώττισης, συλλέγονται πληροφορίες σχετικά με την προσπέλαση πινάκων, και
αναπαριστόνται σε πολυεδρική μορφή. Μετά από έναν αριθμό διαδικασιών επεξεργασίας που
κάνουν χρήση του πολυεδρικού μοντέλου, παράγουμε μία εκτίμηση του προτύπου προσπέλασης
στη μνήμη.

Πιο συγκεκριμένα, ο αλγόριθμός μας παρέχει πληροφορία σχετικά με τα άνω και κάτω όρια των
προσπελάσεων σε στοιχεία πινάκων. Η γνώση αυτή, θα χρησιμοποιηθεί τόσο κατά τη διαδικασία
μεταγλώττισης όσο κατά την εκτέλεση ενός OpenCL πυρήνα σε πολλαπλές υπολογιστικές
μονάδες. Έχουμε έτσι, μία εκτίμηση του μεγέθους εργασίας και της μνήμη που απαιτείται σε
buffer/caches για την εκτέλεση του πυρήνα. Τέλος, έχουμε τη δυνατότητα να ελαττώσουμε τις
μεταφορές δεδομένων μεταξύ host και compute devices με το να μεταφέρονται μόνο όσα στοιχεία
πινάκων βρίσκονται μέσα στα όρια που ενέδειξε ο αλγόριθμός μας.

Acknowledgements

I would like to thank my advisors Christos D. Antonopoulos, Nicolaos Bellas and Panayi-

otis Bozanis for their help and guidance throughout this process, their ideas and feedback

have been absolutely invaluable.

This research has been co-financed by the European Union (European Social Fund ESF)

and Greek national funds through the Operational Program ”Education and Lifelong

Learning” of the National Strategic Reference Framework (NSRF) - Research Funding

Program: ”Thales. Investing in knowledge society through the European Social Fund”.

Thales Project MIS 379416: ”Advanced mathematical methods and software platform

for solving multi-physics, multi-domain problems on modern computer architectures:

applications to environmental engineering and medical problems”.

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

2 Background - Polyhedral Model 4

2.1 Polyhedron . 4

2.1.1 Implicit representation . 5

2.1.2 Generators representation . 5

2.2 Parametric Polyhedron . 5

2.3 Polyhedral Analysis . 6

2.3.1 Polyhedral analysis example . 7

2.4 Polyhedral optimization pass methodology 9

2.4.1 Polyhedral analysis optimization example 10

2.5 Ehrhart polynomials . 13

2.5.1 Ehrhart example . 13

3 Background - Silicon OpenCL 15

3.1 Open Computing Language - OpenCL . 15

3.1.1 Platform model . 15

3.1.2 Execution model . 17

3.1.3 Memory model . 19

3.1.4 Synchronization mechanisms . 21

3.1.5 Memory objects . 21

3.1.6 Trivial example - vector add . 22

3.2 SOpenCL - Silicon OpenCL . 22

v

Contents vi

3.2.1 OpenCL to C transformation . 24

3.2.2 SOpenCL: LLVM Compiler infrastructure 25

3.2.3 Example output . 25

4 Optimizing memory management on heterogeneous systems. 28

4.1 Memory access pattern estimation . 29

4.1.1 Algorithm . 30

4.2 Execution . 36

4.3 Vector add example . 36

4.4 Hybrid numerical PDE solver . 37

4.4.1 Hybrid numeric PDE solver test case evaluation 40

4.5 Validation . 41

4.5.1 A pathologic example . 42

Bibliography 46

List of Figures

2.1 Visual breakdown of the implicit representation 8

2.2 Steps of the extended Quillere algorithm 12

3.1 Floating point operations per second and memory bandwidth for the CPU
and GPU. 16

3.2 The GPU devotes more transistors to data processing. 16

3.3 OpenCL Platform Model: One host with one or more compute devices
each with one or more compute units each with one or more processing
elements. 17

3.4 NDRange: Work-items with global IDs and their mapping onto the pair
of work-group and local IDs . 18

3.5 Example OpenCL device architecture with processing elements, compute
units and devices. The host is not shown. 20

3.6 Silicon-OpenCL Tool Flow. 23

3.7 Silicon-OpenCL Low Level Compiler. 23

3.8 Silicon-OpenCL C-to-RTL backend. 24

3.9 Silicon-OpenCL LLVM compiler infrastructure. 25

4.1 Flow chart of the algorithm. 35

4.2 Boundaries on the large region. 38

4.3 Boundaries on the smaller region. 39

4.4 Random walks, starting from one point on the boundary of the marked
region. This would be performed for a number of points on the boundary
and the remaining ones would be generated via means of interpolation. . . 40

vii

List of Tables

3.1 Memory region, allocation and memory access capabilities. 20

4.1 1D, 2D, and 3D partioning schemes. 33

4.2 Example: Initial polyhedral model. 44

4.3 Example: Element ranges of arrays. 44

4.4 Example: Element ranges of arrays affected by the partition. Top: parti-
tion on dimension X, bottom partition on dimension Y. 45

viii

Abbreviations

CAD Computer Aided Design

CU Compute Unit

HLC High Level Compiler

IR Intermediate Representation

ISL Integer Set Library

LLC Low Level Compiler

PDE Partial Differential Equation

PET Polyhedral Extraction Tool

SCoP Static Control Part

SIMD Single Instruction Multiple Data

SoC System on Chip

SPMD Single Program Multiple Data

ix

Dedicated to my family and friends

x

Chapter 1

Introduction

Heterogeneous parallel systems are becoming increasingly popular, as they offer high

performance with relatively low cost and power dissipation. These architectures typi-

cally include a host system and a number of accelerators, in the form of GPUs, DSPs,

or even FPGAs. Memory on such platforms is inherently distributed. This necessi-

tates explicit data distribution and movement between system components. Typically

accelerators have limited memory capacity, in comparison to system RAM. Quite often

the memory hierarchy within the accelerator is also software controlled. Furthermore,

massive multicore chips in the future will essentially be NUCA, necessitating careful

data placement close to the compute units that will use them. Similarly, in the case of

FPGAs, the on-chip memory (BRAMs) is organized as many, relatively small memory

islands distributed on different areas of the chip.

The above are indicators that sophisticated data distribution and management is neces-

sary for optimizing locality, performance, bandwidth exploitation and power efficiency.

Many popular programming models, however, do not fully expose the communication

pattern. Typical examples are OpenMP [1], or even OpenCL [2] which makes it impossi-

ble to express communication between kernels. Moreover application programmers tend

to be ”clumsy” in data management; for example they prefer using global over local

buffers in OpenCL.

Our approach involves performing compile-time analysis using polyhedral techniques

in order to estimate the memory access pattern of applications developed using the

OpenCL programming model. During compile time, we collect information regarding

accesses to array elements, in the form of polyhedra. After a number of polyhedral

transformations we produce an estimation of the application’s memory access pattern.

More specifically our algorithm provides us with the access bounds on each array. This

information is used both during compile time and the execution of a kernel on multiple

1

Chapter 1. Introduction 2

compute devices. It provides an estimation of the kernel’s working set at compile time

and thus the required memory buffers or cache. Furthermore, it allows for minimizing

the memory transfers by only transfering between the host and the compute devices

the array elements bounded by the ranges produced during the polyhedral analysis

pass. Finally, estimating the required memory buffers/cache is of great importance

when FPGAs are taken into account due to their limited memory capabilities. We can

deploy an OpenCL kernel on an FPGA using the SOpenCL [3] toolchain, which is a

framework for automatic hardware synthesis starting from unmodified OpenCL kernels.

Essentially, SOpenCL can use the information retrieved by our polyhedral analysis in

order to design the memory hierarchy on the FGPA so that data can be closer to where

they are consumed/produced.

Finally, we apply our methodology on a hybrid Partial Differential Equation (PDE)

solver1. The application was developed to provide an alternative method of approaching

multi-domain, multi-physics problems. Its approach is based on breaking down a single

PDE problem to produce a set of intermediate problems. Therefore a heterogenenous

problem is substituted for a set of smaller homogeneous ones. For each of those sub-

problems a solution is computed in a way that when all solutions are combined they form

the solution to the original problem. This process attempts to provide more accurate

solutions compared to solving a single multi-domain, multi-physics problem. After slicing

is performed, new values have to be calculated for every point which lies on the boundary

of each sub-region. These values are generated using a monte carlo algorithm for a

number of boundary points which is then used to fill in the values of the remaining points

on the boundaries using interpolation. Essentially, points are picked on the boundaries

on the smaller regions for which random paths are walked. Each path uses a formula

to produce an estimation of the value at its origin point. After a number of random

walks are performed the results are averaged in order to compute the estimation. This

enhances the overall process in two ways. Firstly, the results are more accurate compared

to solving a single heterogeneous PDE problem. Additionally, this process results in a

run-time speedup, because solving a possibly large problem is more time consuming that

solving a set of smaller ones. In order to use our tool we ported the source code to the

OpenCL2 programming model. Then we used our tool to split the workload on both

CPU and GPU. After all steps of optimization were performed we managed to achieve

an average speedup of 18.3x. This enabled us to solve a problem, which would take ∼ 11

days (259.5 hours) for the original implementation, in ∼ 10.5 hours just by executing

the monte carlo algorithm on both computing devices.

1https://github.com/mvavalis/Hybrid-numerical-PDE-solvers/
2It was originally written using the pthreads API.

Chapter 1. Introduction 3

This thesis is organized as follows. We begin by introducing the polyhedral model in

chapter 2. Then in chapter 3 we provide some background for SOpenCL and OpenCL.

Finally in chapter 4 we present and evaluate our algorithm by applying it to a real-life

application. We ported a hybrid numerical partial differential equation (PDE) solver

multithreaded application to OpenCL and then used our framework to optimize its

execution.

Chapter 2

Background - Polyhedral Model

The polyhedral model (also called polytope model) is a mathematical framework mostly

used for loop nest analysis in compiler optimization. The polyhedral method treats

each loop iteration within nested loops as lattice points inside mathematical objects

called polyhedra (polytopes), performs affine transformations or more general non-affine

transformations such as tiling on the polyhedra, and then converts the transformed

polyhedra into equivalent, but optimized – depending on the target optimization goal –

loop nests through polyhedra scanning.

2.1 Polyhedron

In elementary geometry a polyhedron is a geometric object with flat sides, which exists in

any general number of dimensions. When referring to an n-dimensional generalization,

the term n-polyhedron is used.

A convex polyhedron has two representations [4] the implicit and the generators repre-

sentation. The first describes a polyhedron as the intersection of a finite number of half

spaces. The latter presents a polytope as a combination of vertices, rays and lines; every

point in a polyhedral domain can be generated by a linear combination of its generators.

Finally, Chernikova described a method to produce one representation from the other

[5].

4

Chapter 2. Polyhedral Model 5

2.1.1 Implicit representation

A polyhedron domain (D) is defined as the intersection of a finite set of closed linear

half-spaces. This representation is specified by a system of equalities and inequalities:

D : {x ∈ Qn|Ax = b, Cx ≥ d}

2.1.2 Generators representation

The Minkowski form [6] describes a polyhedron as a combination of lines, rays and

vertices.

D : {x ∈ Qn|x = Lλ+Rµ+ V ν,
∑

i νi}

In other words, every point in Domain D is a linear combination of lines, a positive

linear combination of unidirectional rays and a convex combination of vertices.

The definitions described above are equivalent. Furthermore, each can be constructed

using their dual counterpart. However, they allow for different kinds of transformations

which is why some polyhedral model libraries, such as PolyLib [7] keep both descrip-

tions for a polyhedron at the same time, given that it can be quite costly, in terms of

computation, to transform one representation to the other.

2.2 Parametric Polyhedron

A common representation of parametric (or parameterized) polyhedra is a linear function

of the parameter vector p which is of dimension m:

D(p) : {x ∈ Qn, p ∈ Qm|Ax = Bp+ b, Cx ≥ Cp+ d}

or equivalently

D(p) :

{(
x

p

)
∈ Qn+m|A′

(
x

p

)
= b, C ′

(
x

p

)
≥ d

}

Where A′ = [A| −B] and C ′ = [C| −D]

In order to let the reader get a better understanding of polytopes we will now introduce

the restrictions which come with the Polyhedral Model.

Chapter 2. Polyhedral Model 6

2.3 Polyhedral Analysis

Polyhedral analysis is the process of representing nested loop structures along with their

program statements in the form of polyhedra. Upon analysis of the input source code,

Static Control Parts (SCoPs) are identified. SCoPs are source code fragments that hold

a set of characteristics which if not present polyhedral analysis cannot be applied. These

characteristics are listed below:

• All variables present in the SCoP that are taken into account must fall into one of

the following two categories:

1. Iterator: The variable is used as an iterator in one of the enclosing nested

loops.

2. Parameter: The variable maintains the same value maybe throughout the

execution of the SCoP.

• Each loop’s bounds must be either a) constant, or b) a linear combination of loop

iterators, parameters and/or constants (affine). This also applies to the conditions

on if statements.

• Expressions used to index arrays should be computed as affine combinations of

parameters, iterators and/or constants.

• Data flow between statements in the loop must be explicit. In other words state-

ments may not communicate with each other using shared variables invisible to

the compiler.

Provided that all rules above are met, polyhedral analysis can produce a polytope. Each

integer point of said polyhedron is mapped to the execution of a statement or, in the

context of our thesis, to the access of a variable. This allows for manipulation of the

program structures through polyhedral transformations while maintaining the original

functionality as well as the source code correctness of the SCoP.

In other words the polyhedral model can describe the schedule of a program, however it

can also be used for a wide class of problems as long as they are adhering to the above

rule set. For example, our algorithm constructs polyhedra for array accesses: in this

context each integer point of our polyhedra corresponds to accessing an array element.

Polyhedral analysis is the basis for powerful methods which are present in popular com-

pilers like LLVM/CLANG [8], and GCC [9]. By constructing and transforming polyhedra

the compiler can identify dependencies between statements as well as discover parallelism

Chapter 2. Polyhedral Model 7

which is present in the input source code. This information can be exploited in order

to produce optimized program schedules as well as perform automatic parallelization

[8–11].

2.3.1 Polyhedral analysis example

We show a simple example of applying polyhedral analysis to a small SCoP which

consists of two nested loops:

1 f o r (i =2; i<=N; ++i) {
2 f o r (j =2; j<=min (M,−1+N+2) ; ++j) {
3 S1 (i , j) ;

4 }
5 }

Listing 2.1: Simple SCoP

This SCoP is translated to the following inequalities (constraints).

• 2 ≤ i ≤ N

• 2 ≤ j ≤ min(M,−1 +N + 2)

Which can be further refined to the following:

• 2 ≤ i ≤ N

• 2 ≤ j ≤M

• 2 ≤ j ≤ N + 1

The resulting polyhedron description after expanding the above relations into trivial

constraints is presented below using the Implicit form of section 2.1.1:

1 1 0 0 0 −2

1 0 1 0 0 −2

1 −1 0 1 0 0

1 0 −1 0 1 0

1 0 −1 1 0 1



or equivalently

Chapter 2. Polyhedral Model 8

P(
N

P

) =


(

i

j

)
,

(
N

P

)
∈ Z2|

(
i

j

)


1 0

0 1

−1 0

0 −1

0 −1


+

(
N

P

)


0 0

0 0

1 0

0 1

1 0


≥



2

2

0

0

−1




where i, j are the loop iterators and N, P are parameters; the latter maintain their values

throughout the extent of the SCoP.

From now on the implicit representation will be used to describe polyhedra. It

consists of a matrix with (1 + Number of Iterators + Number of Parameters + 1)

columns and as many rows as the number of constraints which form the polyhedron.

Figure 2.1 is a visual breakdown of the Implicit Representation. In the following lines

we further explain the Implicit Representation form.

• The first column indicates whether the ith row describes an equality or inequality

by setting the column vector’s ith value equal to 0 or 1 respectively.

• Following the first column there exist a ”group” of column vectors, one for each

iterator present in the polyhedron domain. We will refer to this submatrix’s val-

ues by I[row][column]. The value I[i][j] denotes the coefficient of iterator j in

constraint i.

• Using the same idea the next group of column vectors represent the parame-

ters’ coefficients. We will refer to the values of this submatrix using the notation

P [row][column].

• The last column vector is the constant component of the affine constraints.



0=
eq

ua
lit

y
1=

in
eq

ua
lit

y

It
er

at
or

co
effi

ci
en

ts

P
ar

am
et

er
co

effi
ci

en
ts

C
on

st
an

t


Figure 2.1: Visual breakdown of the implicit representation

If we wanted to add the additional constraint 5∗j < 2∗i+N ∗3+4∗M we would have to

extend the above matrix with the following row (constraint)
[

1 2 −5 3 4 −1
]

which represents the inequality 2 ∗ i− 5 ∗ j + 3 ∗N + 4 ∗M − 1 ≥ 0.

Chapter 2. Polyhedral Model 9

2.4 Polyhedral optimization pass methodology

All compiler optimization techniques which are based on the polyhedral model roughly

follow the following four step process:

1. SCoP identification: Polyhedral analysis can only be performed when certain

conditions are met; refer to section 2.3 for a summary of the requirements. It

is the compiler’s responsibility to discover such code fragments in order to apply

polyhedral analysis on them.

2. Polyhedra formation: For every SCoP identified during the previous step, a

number of polyhedra are produced. These represent the statements and data as

well as control flow dependencies present in the SCoP.

3. Optimization through transformation: During this step the polyhedra un-

dergo a series of polyhedral transformations in order to produce new polyhedra,

which describe an optimized version of the original source code.

4. Code generation: The new set of polyhedra are now used as input to produce

one or more source code fragments which can, under certain circumstances, execute

in parallel. In any case the resulting source code is an optimized version of the

original one.

Most of the optimization techniques present in modern compilers use the above skeleton.

When blocks of statements are proven to be parallelizable source code transformations

take place in order to produce parallel code segments. These perform the original com-

putation in parallel, resulting to a much more efficient usage of hardware as well as

improved application performance [10, 12, 13].

Even if the optimization pass fails to identify parallel blocks of statements, performance

gains can still be accomplished by modifying the sequential schedule of the source code in

order to remove overhead cost introduced by if/while/for conditions. This may increase

the code size of applications but in return it removes a number of branches which

decreases the execution time of the SCoP. This is done by producing source code which

scans the integer points of the polyhedron. Scanning means that each integer point in

the polyhedral domain specified by a polytope is visited in order. Since a point in the

polyhedra formed by the the analysis is mapped to the execution of a set of statements,

this scan is in fact a program schedule for the original algorithm.

Polyhedral analysis enforces quite strict rules regarding the source code on which it can

be performed. However, it allows for many loop transformations which are common in

Chapter 2. Polyhedral Model 10

compiler optimization passes to be applied with ease. We will present a few examples

of loop transformation techniques In more detail:

• Loop tiling: The process of transforming nested loops by splitting their iteration

space into smaller subdomains called blocks. This transformation is intended to

force the enclosed statements to operate on fewer data per iteration. If applied

properly, cache efficiency increases because data are being reused in the inner

nested loop. Since exploiting the cache mechanism can lead to a huge improvement

in application performance, loop tiling is a quite popular loop transformation in

the high performance computing community.

• Loop splitting: Breaks the iteration space of a loop into a set of contiguous

subsets which can be then executed in sequence. The goal here is to simplify loops

by removing condition checking and/or data/control flow dependencies statically,

at the cost of increasing code size.

– A special case of loop splitting is loop peeling which removes some of the

first (or last) iterations and executes them separately before (or after) the

loop body.

• Loop fission: Loop fission is similar to the above two transformations. A given

loop structure is split into multiple smaller ones which have the same iteration

space but each one executes a susbet of the original block of statements. The

reverse transformation is called loop fusion. From a set of loops with the same

iteration domain a new loop structure is created whose body is a combination of the

bodies of the individual ones. If applied properly both transformations can achieve

better locality of references, which can improve the application performance.

• Loop unrolling: Is the process of rewritting a loop’s body and stride in order

to have one iteration execute the workload of multiple ones provided they are

sequential. This optimization attempts to improve performance by a) reducing

end-of-loop tests and branches, b) reducing memory delays especially in the case

of memory read accesses, c) pipelining and so on. However this comes at the

expense of code size because the original loop’s body statements are replicated a

number of times.

2.4.1 Polyhedral analysis optimization example

A popular algorithm based on polyhedral analysis is Quillere’s algorithm [13]. It pro-

duces an optimized code which scans the input polyhedra. Because polyhedra can be

Chapter 2. Polyhedral Model 11

used to represent SCoPs, Quillere’s algorithm may be used as a compiler optimization

pass. The final output is the optimized schedule for the original source code. In certain

cases where parallelism can be discovered the algorithm’s output will actually consist of

schedules of source code that can be executed concurrently.

The algorithm recursively iterates the dimensions of the input polyhedron. In each it-

eration of the process the existing polyhedra are separated into a new list of disjoint

polyhedra. Afterwards the lexicographic ordering graph is created, an edge from poly-

hedron P to polyhedron Q indicates that P precedes Q and should be scanned earlier.

Finally, if no ordering exists between two polyhedra they they can safely execute in

parallel.

We will now apply a simple optimization pass on a small SCoP in order to optimize the

schedule of its statements. Consider the following source code:

1 f o r (i=1 ; i<=max(N,M) ; i++) {
2 f o r (j =1; j<=N; j++) {
3 i f (j==i)

4 S1 (i , j) ;

5 e l s e i f (i<=j)

6 S2 (i , j) ;

7 i f (j==N)

8 S3 (i , j) ;

9 }
10 }

Listing 2.2: Example code

The polyedra generated during the extended Quillere algorithm execution are presented

in figure 2.4.1. The Y-axis stands for the dimension introduced by iterator j, while the

X-axis corresponds to the iterator i.

The code which scans the final polyhedra in lexicographic order is presented in listing

2.3.

Chapter 2. Polyhedral Model 12

Figure 2.2: Steps of the extended Quillere algorithm

1 f o r (i =1; i<=N; i++) {
2 S1 (i , i) ;

3 S2 (i , i) ;

4 f o r (j=i +1; j<N; j++) {
5 S2 (i , j) ;

6 }
7 S2 (i ,N) ;

8 S3 (i ,N) ;

9 }
10 S1 (N−1, N−1) ;

11 S2 (N−1, N−1) ;

12 S2 (N−1, N) ;

13 S3 (N−1, N) ;

14 S1 (N, N) ;

15 S2 (N, N) ;

16 S3 (N, N;

17 f o r (i=N+1; i<=M; i++) {
18 S3 (i , N) ;

19 }

Listing 2.3: Optimized code

Instead of producing if statements, polyhedral analysis has opted to make use of loop

transformations and statement duplication. The resulting source code has fewer branches

but its size has increased; this performance/code-size trade-off ratio can be fine-tuned

by the compiler.

Chapter 2. Polyhedral Model 13

2.5 Ehrhart polynomials

The ability to produce useful information regarding memory accesses such as [14]:

• Dynamic array size.

• Times an array is accessed.

• Number of array elements accessed1.

• Number of loop iterations executed, etc.

is quite important because it allows for compiler optimizations which otherwise would

be dangerous to perform since application correctness would not be guaranteed.

Ehrhart [15] showed that the number of integral points in a parametric polyhedron

can be represented as a quasi-polynomial (pseudo-polynomial) expression. The only

requirement is that the polyhedron Pp can be represented as a convex combination of

its parametric vertices:

Pp =

x ∈ Qn|x = λV (p), 0 ≤ λj ,
∑
j

λj = 1


Where V (p)’s columns are the vertices of Pp and each vertex vj(p) is an affine com-

bination of the parameters with rational coefficients. In essense a quasi-polynomial is

a polynomial whose coefficients are n-periodic numbers which depend (periodically) on

the polyhedron’s variables (iterators).

In mathematic terms [14, 15] a n-periodic number is a function Zn → Z, such that there

exist periods q = (q1, ..., qn) ∈ Nn such that U(p) = U(p′) whenever pi ≡ p′i mod qi, for

1 ≤ i ≤ n. The least common multiple of all qi is called the period of U(p).

2.5.1 Ehrhart example

To illustrate the functionality of the Ehrhart polynomials we will now apply Ehrhart’s

methodology in order to count the number of loop iterations in the double nested loop

1In our algorithm we use Ehrhart polynomials for this exact purpose. After our polyhedral analysis
and workload-partitioning pass, we use the Ehrhart polynomials to get an (over)estimation of the number
of elements addressed by each memory accessing statement. We will elaborate on this aspect of our
approach in section 4.1.

Chapter 2. Polyhedral Model 14

presented in code listing 2.1. As we mentioned earlier the polyhedron produced is

P(
N

P

) =


(

i

j

)
,

(
N

P

)
∈ Z2|

(
i

j

)


1 0

0 1

−1 0

0 −1

0 −1


+

(
N

P

)


0 0

0 0

1 0

0 1

1 0


≥



2

2

0

0

−1




The respective erhrhart polynomial is:

#P(
N

P

) =

(N − 1) ∗N, if M ≥ N + 1 and N ≥ 2

(N − 1) ∗ (M − 1) if N −M + 1 ≥ 0 and N ≥ 2 and M ≥ 2

Since the polyhedron is parameterized, the Ehrhart polynomial uses the polyhedron’s

parameters to produce a count for its integral integer points. This follows our intuition

because the parameters determine the loop bounds. The outter loop will always execute

N − 2 + 1 = N − 1 times whereas the inner loop will execute N + 1− 2 + 1 = N times if

M < N + 1, otherwise if N + 1 < M . the loop will iterate M − 2 + 1 = M − 1 times. In

any case the Ehrhart polyhedron is equal to multiplying the number of times the loops

will iterate.

Chapter 3

Background - Silicon OpenCL

Silicon OpenCL (SOpenCL) [3] is an architectural synthesis CAD tool targeting hetero-

geneous parallel computing platforms. The objective is to allow a software programmer

develop an OpenCL application once and deploy it on any platform, without the hassle

of additional modifications. Before going into any more details regarding SOpenCL we

will first briefly introduce the OpenCL programming model.

3.1 Open Computing Language - OpenCL

In the past years due to the high demand for realtime and high-definition 3D graph-

ics GPUs have evolved into highly parallel, multithreaded, manycore processors with

tremendous computational horsepower and very high memory bandwidth [16] (figure

3.1)1.

The GPU is specialized for compute-intesive, highly parallel computation since it was

designed to facilitate rendering graphics. Thus more chip area is used for data processing

rather than data caching and flow control as illustrated by figure 3.2. The general

principle is to hide memory access latency with calculations instead of big data caches.

3.1.1 Platform model

An OpenCL application consists of two parts: kernels which execute on OpenCL devices

and a host program which executes on the host. The latter is responsible for initializing

and managing the kernel execution on the computing devices.

1The images presented in this section are from NVIDIA’s ”OpenCL Programming Guide for the
CUDA Architecture” which can be found at http://www.nvidia.com/content/cudazone/download/

OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf

15

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf

Chapter 3. Silicon OpenCL 16

Figure 3.1: Floating point operations per second and memory bandwidth for the CPU
and GPU.

Figure 3.2: The GPU devotes more transistors to data processing.

Chapter 3. Silicon OpenCL 17

Figure 3.3: OpenCL Platform Model: One host with one or more compute devices
each with one or more compute units each with one or more processing elements.

Execution devices in OpenCL vary and can be CPUs, GPUs or even custom hardware

accelerators in the form of FPGAs or SoCs. A compute device is partitioned into a

number of compute units (CUs) which are further divided into one or more processing

elements (PEs). Kernel execution on a device occurs within the processing elements.

The platform model is illustrated in figure 3.3.

3.1.2 Execution model

An OpenCL application runs on a host which submits commands to execute compu-

tations on the processing elements within a device. These execute a single stream of

instructions as SIMD units. More specifically, processing elements may either execute

in lock-step in a single stream of instructions (e.g. GPUs) or as SPMD units with each

PE maintaining its own program counter (e.g. CPUs).

Before the execution of an OpenCL kernel an index space must be created on which the

thread topology is mapped. This index space is called NDRange; each point in it is a

thread. In OpenCL terms such points are called work-items. These are identified by

their position in NDRange.

Work-items are organized into work-groups. These blocks of threads are identified by

a unique work-group ID with the same dimensionality as the index space used for the

work-items. As such, a thread may be uniquely identified by its global ID or a by a

combination of its local ID and work-group ID.

OpenCL’s NDRange is a 1D, 2D, or 3D index space. It is defined by an integer ar-

ray of length N ∈ 1, 2, 3 specifiying the extent of the index space in each dimen-

sion starting at an offset index F which by default is 0. Each work-item’s global

and local ID are n-dimensional. The global ID components take values in the range

Chapter 3. Silicon OpenCL 18

Figure 3.4: NDRange: Work-items with global IDs and their mapping onto the pair
of work-group and local IDs

[F, F + global size DIM − 1]; where DIM is x, y, or z and global size DIM is the

number of elements in that dimension.

In the same manner work-groups are assigned IDs, an array of length N defining the

number of work-groups in each dimension. Work-items are assigned to a work-group

and given a local ID tuple with componentsin the range [0, work group size DIM − 1].

The organisation of threads in an NDRange can be seen in figure 3.4.

In addition to the NDRange, an OpenCL context has to be constructed prior to the

execution of OpenCL kernels. The context contains information about the following

resources:

Devices The compute devices to be used for the execution of the kernels.

Kernels The OpenCL functions to be executed on the compute devices.

Program Objects Program source and executable that implements the kernels.

Memory Objects Set of buffers visible to host and OpenCL compute devices that

contain data which will be passed as parameters to the kernels.

Following the instatiation of the OpenCL context, a command-queue is created in order

to manage the execution of the kernels on the compute devices. The command-queue is

used to hold commands originating from the host untill they are scheduled on a context’s

compute device. Such commands may be one of the following:

Chapter 3. Silicon OpenCL 19

Kernel execution commands Initiate the execution of a kernel on a device.

Memory commands Initiate a memory transfer to, from, or between memory objects,

or map and unmap memory objects from the host address space.

Synchronization commands Constrain the order of execution of commands.

The above commands execute asynchronously between the host and the device. However

commands execute relative to each other in one of two modes:

In-order execution Commands are launched and complete in the order they appear

in the command-queue, in other words the commands are serialized.

Out-of-order execution Commands are issued in order, but a command does not

wait for prior ones to complete before it executes. The programmer is responsible

to explicitly enforce order constraints by means of synchronization commands.

3.1.3 Memory model

Memory in OpenCL may be one of the following four different types:

Global memory This memory is instatiated by the host and permits read/write access

to all work-items, in all work-groups.

Constant memory Constant memory is instatiated and filled with data by the host;

it permits read access to all work-items, in all work-groups but not write access.

Local memory This memory is local to a work-group and contains data which are

shared to all the work-items in that work-group.

Private memory Private memory contains a work-item’s private variables which are

not shared with any other work-item.

More information regarding the different characteristics of the types of OpenCL memory

can be found in table 3.1. Furthermore, a conceptual OpenCL device architecture is

illustrated in figure 3.5.

In OpenCL host and compute device memory models are disjoint for the most part. They

do however need to interact in order to make transferring data between the devices and

the host program possible. This can be accomplished by either explicitly copying data

to/from the devices or by mapping/unmapping regions of a memory object.

Chapter 3. Silicon OpenCL 20

Global Constant Local Private

Host Dynamic Dynamic Dynamic No allocation.
allocation. allocation. allocation.

Read/Write Read/Write No access. No access.
access. access.

Kernel No allocation. Static Static Static
allocation. allocation. allocation.

Read/Write Read access. Read/Write Read/Write
access. access. access.

Table 3.1: Memory region, allocation and memory access capabilities.

Figure 3.5: Example OpenCL device architecture with processing elements, compute
units and devices. The host is not shown.

Explicit data copying to/from the compute devices is managed by the host. These

memory transfers may either be blocking or non-blocking; a blocking call will complete

when the associated memory resources on the host can be safely reused. However, a

non-blocking command will return as soon as the command is eqnueued without waiting

till its completion.

The host program may also choose to map a memory object onto its address space.

Similarly to explicit data copying the map/unmap commands may either be blocking

or non-blocking. Once the host has finished performing read/write accesses onto the

mapped memory region it unmaps the memory object.

Chapter 3. Silicon OpenCL 21

3.1.4 Synchronization mechanisms

Synchronization in OpenCl is performed in two possible scenaria:

• Synchronization between work-items in a work-group.

• Commands within one or more command-queues in a single OpenCL context.

In an OpenCL kernel the work-items of a work-group may make use of a work-group

barrier in order to achieve synchronization amonsgt them. However using a barrier in

OpenCL must be done carefully. All work-items in the group or none at all must execute

the barrier, otherwise the kernel will come to an unnatural halt and will eventually have

to be terminated. Finally there is no built in synchronization mechanism between work-

groups.

Synchronizing commands in command-queues can be achieved by either using command-

queue barriers or waiting on an event. A barrier can be used to synchronize commands in

a single command-queue. It ensures that all previously commands have finished execut-

ing and any resulting updates to memory objects are visible to subsequently enqueued

commands before they execute.

3.1.5 Memory objects

Memory objects can either be buffer objects or image objects. A buffer object is a one-

dimensional array of scalar, vector, or even user-defined structures. An image object is

used to store a two- or three- dimesnional texture, frame-buffer, or image. Its elements

are selected from a list of predefined image format. In both cases the minimum number

of elements in a memory object is one. Memory objects are described by a cl mem

object and are used as input/output arguments to the OpenCL kernels.

There are two fundamental differences between a buffer and an image object:

1. Elements in a buffer are stored in sequential fashion and can be accessed using a

pointer by a kernel executing on a device. Elements of an image are stored in a

format that is opaque to the user and cannot be directly accessed using a pointer.

Built-in functions are provided by the OpenCL C programming language to allow

a kernel to read from or write to an image.

2. For a buffer object, the data is stored in the same format as it is accessed by the

kernel, but in the case of an image object the data format used to store the image

elements may not be the same as the data format used inside the kernel. Image

Chapter 3. Silicon OpenCL 22

elements are always a 4- component vector (each component can be a float or

signed/unsigned integer) in a kernel. The built-in function to read from an image

converts image element from the format it is stored into a 4-component vector.

Similarly, the built-in function to write to an image converts the image element

from a 4-component vector to the appropriate image format specified such as 4

8-bit elements, for example.

3.1.6 Trivial example - vector add

A vector add kernel is one of the simplest OpenCL kernels and a great way to get

introduced to the OpenCL programming model. Each thread reads two integers then

sums them and finally stores the result in an output array. The respective OpenCL

kernel can be seen in listing 3.1.

1 k e r n e l void vector add (g l o b a l const double ∗a ,

2 g l o b a l const double ∗b , g l o b a l double ∗c ,

3 const unsigned i n t n)

4 {
5 /∗ Each thread uses one i n t e g e r from the a , b , c a r rays based on h i s

6 unique g l o b a l id , the ke rne l i s i n s t a n t i a t e d us ing an 1D NDRange ∗/
7 i n t id = g e t g l o b a l i d (0) ;

8

9 /∗ Avoid out o f bounds acces s , t h i s ∗might∗ i n t roduce d ive rgence in the

10 l a s t threads but i t i s not a major concern s i n c e i t does not invo lv e a

11 l a r g e number o f threads or a l a r g e number o f ope ra t i on s ∗/
12 i f (id < n) {
13 c [id] = a [id] + b [id] ;

14 }
15 }

Listing 3.1: Simple vector add kernel implemented in OpenCL.

3.2 SOpenCL - Silicon OpenCL

The tool consists of a two level compilation process: High Level Compilation (HLC) and

Low Level Compilation (LLC). The high level compiler processes an OpenCL applica-

tion and partitions its kernels as appropriate across the available computing platforms

(figure: 3.6): a) CPU, b) GPU, and c) FPGA. The low level compiler processes

OpenCL kernels selected to run on FPGA platforms. The task of the LLC is to com-

pile an OpenCL kernels and generate an equivalent hardware design that fis the target

FPGA decice and fulfills performance requirements. Additionally, SOpenCL provides

Chapter 3. Silicon OpenCL 23

runtime environments for each of the target platforms to facilitate their integration and

the execution of OpenCL kernels.

Figure 3.6: Silicon-OpenCL Tool Flow.

Figure 3.7 shows the low level compiler flow. The LLC converts unmodified OpenCL ker-

nels into a system on chip (SoC) with hardware and software components. The tool flow

generates a hardware accelerator for each OpenCL kernel in two phases: OpenCL-to-C

transformation, and C-to-RTL. The tool flow also generates the runtime environment

and drivers, in addition to the testbench generated for simulation and verification pur-

poses. The OpenCL-to-C frontend developed by Daloukas [17] generates a C function

from an OpenCL kernel by coarsening the computation granularity. The C-to-RTL back-

end developed in this thesis generates a hardware accelerator RTL description for each

OpenCL kernel.

Figure 3.7: Silicon-OpenCL Low Level Compiler.

Chapter 3. Silicon OpenCL 24

Figure 3.8 shows the C to RTL back end tool flow which along with the front end is

based on the LLVM compiler infrastructure [18]. LLVM compiler translates the in-

put C function into an assembly-like intermediate representation, called LLVM-IR. The

LLVM compiler provides conventional optimizations and transformations such as dead

code elimination, redundant code elimination, constants propagation, algebraic trans-

formations, loop transformations, loop unroll, and loop invariant code motion. Given

the LLVM-IR, the backend performs two sets of tasks, low level transformations and

optimizations, and hardware allocation and generation.

Figure 3.8: Silicon-OpenCL C-to-RTL backend.

3.2.1 OpenCL to C transformation

As explained in the previous section, OpenCL exposes parallelism at a fine level of granu-

larity by allowing the programmer to embody the task executed by a single logical thread

in an OpenCL kernel.Depending on performance requirements, and resource availability,

any number of hardware accelerators can be generated spanning from a simple inter-

polator, executing a single thread per invocation, to an accelerator that produces the

complete interpolated frame every time it is invoked. Between these two extremes, a

hardware generation tool can generate any number of accelerators, each, potentially,

being assigned a different amount of workload per invocation.

In order to enable efficient mapping of OpenCL kernel functions to the underlying plat-

form while at the same time taking into account any hardware constraint, SOpenCL tool

applies a series of source-to-source transformations in the high level compiler frontend

(Figure 3.7) that collectively aim at coarsening the granularity of a kernel function from

the work-item to the work-group level.

OpenCL-to-C frontend applies three source-to-source transformations: threads serializa-

tion, elimination of synchronization functions, and variable privatization. The end result

is a C Function which consists of triple nested loops in order to emulate the execution

of OpenCL kernels in an NDRange 3D index space.

Chapter 3. Silicon OpenCL 25

The body of a triple nested loop represents the workload of a single work-item, which

leads to the conclusion that multiple iterations of a triple nested loop can correspond

to multiple work-items, and hence, can be executed in parallel and out of order. Fur-

thermore, explicit local memory representations are transformed into local data arrays

in the C function, and can be implemented as on-chip distributed memory blocks.

3.2.2 SOpenCL: LLVM Compiler infrastructure

Owaida [3] developed an LLVm compiler infrastructure to provide a machine indepen-

dent framework for program optimization, analysis, and refactoring. To provide support

for multiple programming languages and different target architectures, LLVM adapts a

three-step compilation flow (Figure 3.9). The LLVM compiler model provides a RISC-

style, yet rich, intermediate representation (LLVMIR) between the frontend, optimizer,

and backend.

Figure 3.9: Silicon-OpenCL LLVM compiler infrastructure.

The clarity and completeness of the LLVM-IR, provides a simple way for conveying

information between multiple analysis and transformation passes as well between the

frontend and backend. Using LLVM-IR, the compiler framework is a collection of li-

braries of transformations and optimizations can be used to build a compiler for any

language and target architecture. In particular, LLVM-IR is both well specified and the

only interface to the optimizer. This property means that all one needs to know to write

a frontend for LLVM is what LLVM-IR is, how it works, and the invariants it expects.

3.2.3 Example output

To demosntrate the functionality of the SOpenCL front-end we used as input a Multiple

Debye-Huckel method kernel programmed in OpenCL (listing 3.2) the C Function which

was produced can be seen in listing 3.3.

Chapter 3. Silicon OpenCL 26

1 k e r n e l void mdh(g l o b a l f l o a t ∗ax , g l o b a l f l o a t ∗ay ,

2 g l o b a l f l o a t ∗az , g l o b a l f l o a t ∗ charge ,

3 g l o b a l f l o a t ∗ s i z e , g l o b a l f l o a t ∗gx ,

4 g l o b a l f l o a t ∗gy , g l o b a l f l o a t ∗gz ,

5 g l o b a l f l o a t ∗val , f l o a t pre1 ,

6 f l o a t xkappa , i n t natoms)

7 {
8 i n t i g r i d = g e t g l o b a l i d (0) ;

9 f l o a t v = 0 .0 f ;

10 f l o a t dx , dy , dz , d i s t ;

11

12 f o r (i n t jatom = 0 ; jatom < natoms ; jatom++) {
13 dx = gx [i g r i d] − ax [jatom] ;

14 dy = gy [i g r i d] − ay [jatom] ;

15 dz = gz [i g r i d] − az [jatom] ;

16 d i s t = s q r t (dx∗dx + dy∗dy + dz∗dz) ;

17 v += pre1 ∗ (charge [jatom] / d i s t)

18 ∗ exp(−xkappa ∗ (d i s t−s i z e [jatom]))

19 / (1 . 0 f+xkappa∗ s i z e [jatom]) ;

20 }
21 va l [i g r i d] = v ;

22

23 }

Listing 3.2: MDH source code written in OpenCL.

Chapter 3. Silicon OpenCL 27

1 /∗ Keep the compi ler happy ∗/
2 #d e f i n e k e r n e l

3 #d e f i n e g l o b a l

4 #d e f i n e l o c a l

5

6 k e r n e l void mdh(g l o b a l f l o a t ∗ax , g l o b a l f l o a t ∗ay ,

7 g l o b a l f l o a t ∗az , g l o b a l f l o a t ∗ charge ,

8 g l o b a l f l o a t ∗ s i z e , g l o b a l f l o a t ∗gx ,

9 g l o b a l f l o a t ∗gy , g l o b a l f l o a t ∗gz ,

10 g l o b a l f l o a t ∗val , f l o a t pre1 ,

11 f l o a t xkappa , i n t natoms ,

12 /∗ The arguments below were introduced by the SOPenCL f r o n t end ∗/
13 i n t g l o b a l i d x , i n t g l o b a l i d y , i n t g l o b a l i d z ,

14 i n t g l o b a l s i z e x , i n t g l o b a l s i z e y , i n t g l o b a l s i z e z ,

15 i n t work group id x , i n t work group id y , i n t work group id z ,

16 i n t l o c a l s i z e x , i n t l o c a l s i z e y , i n t l o c a l s i z e z)

17 {
18 unsigned i n t k e r n e l i , k e r n e l j , k e r n e l k ;

19 f l o a t c l c s e 8 ;

20 i n t i g r i d ;

21 f l o a t v , dx , dy , dz , d i s t ;

22

23 f o r (k e r n e l k = 0 ; k e r n e l k < l o c a l s i z e z ; k e r n e l k++) {
24 f o r (k e r n e l j = 0 ; k e r n e l j < l o c a l s i z e y ; k e r n e l j ++) {
25 f o r (k e r n e l i = 0 ; k e r n e l i < l o c a l s i z e x ; k e r n e l i ++) {
26 i g r i d = (g l o b a l i d x + k e r n e l i) ;

27 v = 0 .0 f ;

28 f o r (i n t jatom = 0 ; jatom < natoms ; jatom++) {
29 dx = gx [i g r i d] − ax [jatom] ;

30 dy = gy [i g r i d] − ay [jatom] ;

31 dz = gz [i g r i d] − az [jatom] ;

32 d i s t = s q r t (dx ∗ dx + dy ∗ dy + dz ∗ dz) ;

33 c l c s e 8 = s i z e [jatom] ;

34 v += pre1 ∗ ((charge [jatom] / d i s t) ∗
35 (exp(−xkappa ∗ (d i s t − c l c s e 8)) /

36 (1 . 0 f + xkappa ∗ c l c s e 8))) ;

37 }
38 va l [i g r i d] = v ;

39 }
40 }
41 }
42

43 }

Listing 3.3: SOpenCL’s front-end output when the MDH OpenCL kernel is used as

input.

Chapter 4

Optimizing memory management

on heterogeneous systems.

The target of this thesis is to optimize memory management on heterogeneous systems.

Our approach involves performing memory access pattern analysis on kernels in order

to produce an accurate1 estimation of the memory usage. This information is produced

in the form of array ranges describing which elements are accessed as well as whether

they are read or written. Using these ranges we can statically partition the kernel and

generate kernels which use fractions of the original data.

Memory in GPUs is considered small compared to system memory, however the difference

is even more profound in the case of FPGAs. Thus an OpenCL kernel may not be able

to execute at all on a given compute device due to device memory not being big enough

to store all its working set. We propose our algorithm as a solution to this problem;

by analysing the OpenCL kernel we can potentially decrease the amount of memory

allocated on a single OpenCL compute device, since we detect which ranges of arrays

are actually required for each sub-kernel2 and allocate memory for them instead of the

total range of data. Since we can now use more than one compute device concurrently for

the execution of a single kernel we can also improve the performance of an application,

much like the way a traditional multithreaded application is, usually, sped up when

multiple CPUs are used instead of just one.

1Our memory access pattern analysis is based on polyhedral techniques. Therefore we assume that
the polyhedra generated are convex which may result in inaccurate estimations. However the inaccuracy
comes in the form of overestimating the number of array elements used. We believe that this is acceptable
since transferring more data than the absolutely necessary may affect the performance gain of the
optimization but not the overall correctness of the OpenCL kernel(s).

2Throughout this thesis we will refer to the kernels executing part of the total computation as sub-
kernels.

28

Chapter 4. Optimizing memory management on heterogeneous systems. 29

Our algorithm in its core uses the Polyhedral Extraction Tool (PET) [19], ISL [20] and

PolyLib [7]. PET is a library created to produce a polyhedral model from C source code.

It is based on LLVM’s C frontend CLANG [21] and ISL. ISL is a library for manipulating

quasi-affine sets and relations, it allows for easy construction as well as powerfull and

compact representation of the polyhedral model. Finaly PolyLib, a library for manip-

ulating parameterized polyhedra, provides a rich set of functions including finding the

vertices and producing Ehrhart polynomials (see section 2.5) of parameterized polyhe-

dra.

Currently we are using the SOpenCL framework to produce C source code using an

OpenCL kernel as input. We explained in chapter 3 that the SOpenCL framework

coarsens the granularity of an OpenCL kernel and produces C code which executes

the computations that take place inside a single work-group. Using an appropriate

loop hierarhy3 the work-group can be executed on a CPU, or after a HLS pass a kernel

instance can be deployed on an FPGA. In both cases the C source code will conveniently

enclose the original work-item in a triple nested loop which suits the needs of polyhedral

analysis. With minor modifications to the current implementation of our algorithm

OpenCL kernels can be handled without making use of the coarsening simply by mapping

all calls to get local id(dimension), get global id(dimension), get local size(dimension),

get global size(dimension) and so on to (nonexistent) variable much like the SOpenCL

framework operates.

4.1 Memory access pattern estimation

Starting from an unmodified OpenCL kernel we use the SOpenCL front end which

outputs an equivalent valid C function. This C source code consists of a number of

triple nested loops which accurately represent the execution of work-group’s work-items

in a serialized manner. Since the loop iterators are induction variables4 each triple nested

loop is a great basis for a SCoP (section 2.3) which is our motivation to apply polyhedral

analysis. Furthermore in order to fully take advantage of the OpenCL programming

model software developers are encouraged to keep divergence to a minimum, therefore

we expect the input OpenCL kernel to contain simple control flow, or none at all. This

characteristic will be trasfered to the C source code by the SOpenCL front end and will

allow PET to generate polyhedra that accurately represent the accesses.

3For example, a kernel that uses a 3 dimensional NDRange will make use of a triple nested loop; one
loop structure for each dimension.

4A variable that gets increased or decreased by a fixed amount on every iteration of a loop, or is a
linear function of another induction variable. In our case the iterators are increased by 1.

Chapter 4. Optimizing memory management on heterogeneous systems. 30

The output of the memory access pattern analysis algorithm is a set of ranges for all

array accesses5 in the original OpenCL kernel as well N OpenCL kernels which are

modified versions of the original kernel and each one completes a fraction of the origi-

nal computation workload. These N kernels can be executed concurrently by different

compute devices. Finally, our tool also provides information about accesses on which

polyhedral analysis cannot be performed, because they cannot be placed in a valid SCoP.

4.1.1 Algorithm

Our memory access estimation algorithm starts with an OpenCL kernel used as input

to the SOpenCL frontend which will create a C function that performs the computation

workload of a single work-group. We use PET [19] to parse the C file and create the

polyhedra which represent the accesses to memory arrays. During the analysis we keep

track of arrays which are involved in accesses that cannot be represented by polyhedra.

If, at any time, we find another access that involves the aforementioned arrays, we do

not create any additional polyhedra. Since we cannot represent all accesses to an array

we do not want to use incomplete information when we perform our memory analysis

algorithm because we would produce highly inaccurate results which could certainly

effect the correctness of the final kernels. We have to make the assumption that all

elements of such arrays are used in all the sub-kernels we produce. For example consider

the following SCoP:

1 f o r (i =0; i<N; ++i) {
2 f o r (j =0; j<M; ++j) {
3 c += a [i] ; // S1

4 c += a [i ∗ j] ; // S2

5 }
6 }

Listing 4.1: Example illegal array access.

Even though S1 is a perfectly legal access we have to discard it because S2 cannot be

described using the polyhedral model, since i ∗ j is not an affine expression. Had we

done otherwise but discard all information about accesses to array a we would not be

able to know that elements of a whose index is beyod N are accessed. This is due to

the fact that S2 accesses elements up to index (N − 1) ∗ (M − 1). Therefore during the

execution of the kernel we would falsely assume that transferring to the compute device

only the elements with index [0, N) is perfectly fine.

5A single statement may involve multiple array accesses, for example a[i] = a[i*2] + a[j+N] .

Chapter 4. Optimizing memory management on heterogeneous systems. 31

The core of the memory access pattern analysis procedure takes place after PET has fin-

ished producing the polyhedra which represent accesses to memory. We begin by forcing

the polyhedra to include, in the form of dimensions, all of the parameters generated by

the SOpenCL frontend. After asserting that all dimensions are present, we inject the

following constraints to describe relations between these (possibly new) dimensions that

are not apparent from the parsed C source code:

index ≥ 0 local size(0) ≥ 1 local size(1) ≥ 1

local size(2) ≥ 1 global size(0) ≥ 1 global size(1) ≥ 1

global size(2) ≥ 1 global id(0) ≥ 0 global id(1) ≥ 0

global id(2) ≥ 0

global id(0) ≤ global size(0)− local size(0)

global id(1) ≤ global size(1)− local size(1)

global id(2) ≤ global size(2)− local size(2)

or equivalently



index

local size(0)

local size(1)

local size(2)

global size(0)

global size(1)

global size(2)

global id(0)

global id(1)

global id(2)



∗



1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 −1 0 0 1 0 0 −1 0 0

0 0 −1 0 0 1 0 0 −1 0

0 0 0 −1 0 0 1 0 0 −1



≥



0

1

1

1

1

1

1

0

0

0

0

0

0




The next step of the algorithm is to remove all unnecessary constraints from the poly-

hedra. This allows for easily detecting whether an access depends on a specific variable

as well as reducing the time required to produce the vertices of the polyhedra. A non-

essential dimension may be introduced either because it was used in the context of the

Chapter 4. Optimizing memory management on heterogeneous systems. 32

access in the enveloping loop structures or because we inserted it during the earlier pro-

cess of injecting constraints. Removing the unnecessary dimensions involves recursively

identifying them and then projecting them out using the Fourier-Motzkin elimination

process [22]. The initial set essential-dims gets populated by inserting all the dimensions

with non-zero coefficients in the equality representing the index of the access. We then

iterate through all remaining (in)equalities of the polyhedron. If an (in)equality is a

combination of K dimensions of essential-dims and L dimensions which are not in the

set we insert the L dimensions in it. This process is repeated every time essential-dims

increases in size. Finally, we project out all dimensions but those listed in the set.

At this point we can tell if a polyhedron can be split. Currently our tool splits the total

workload in one dimension, namely X. This is done simply by polling the polyhedron

for the dimension global id(0). If it is present we know that the access depends on the

X-axis coordinate of the point describing a thread in the NDRange. If global id(0) is

not present in the polyhedron we get an estimation of the number of the elements which

are accessed as well as the range of their indices by computing the Ehrhart polyhedron

and the polyhedron’s vertices. We start this process by removing all dimensions which

are mapped to a variable (section 2.3) leaving only the virtual variable index which

is equal to the linear combination of variables and parameters that form the index of

the array access. Essentially, this enables us to get the lower and upper bounds of

the elements been read/written by this specific access simply by finding the possibly

parametric vertices of the polyhedron. During execution we will use this information to

transfer the respective array segments between the host and all computing devices since

accesses on them do not depend on the work-items’ position in the NDRange.

In the event that an array index involves global id(0), before we partition the NDRange

space into N smaller ones we get an estimation of the total number of elements been

accessed using the methodology we described earlier6. Even though we currently only

partition the kernel in 1D, our methodology can be easily modified to support any

partition which can be represented by a polyhedron, for example 2D as well as 3D

partitioning schemes; these are illustrated in table 4.1. Splitting the polyhedron into

smaller parts is achieved by injecting constraints, more specifically inequalities. For

example these inequalities would have to be inserted in the polyhedron to generate the

3rd out of 5 sub-polyhedra:

Additional Inequalities =

6This information is used mostly by the software developer to get an estimation of the application’s
total memory footprint.

Chapter 4. Optimizing memory management on heterogeneous systems. 33

1D Partitioning 2D Partitioning

3D Partitioning

Table 4.1: 1D, 2D, and 3D partioning schemes.

global size(0) ≥ 2

5
∗ (global size(0)− local size(0))

global size(0) <
3

5
∗ (global size(0)− local size(0))

or equivalently




global id(0)

global size(0)

local size(0)

 ∗
[

5 −2 2

−5 3 −3

]
≥

[
0

5

]
After producing a sub-polyhedron representing a fraction of the total access, we use the

process described above to produce the Ehrhart polynomials which is an estimation of

how many elements are accessed as well as the range of elements’ indices in the form of

bounds (element address ∈ [low, high]). We will use this range to rewrite the access so

that we can allocate less memory in the OpenCL compute device. The rewritten access

will be of the form array[original index− low bound+offset] where offset is the sum

of the Ehrhart polynomials for all previous accesses to this array 7.

The pseudocode for our algorithm can be seen in snippet 4.2, the process is also illus-

trated in figure 4.1.

7Currently this last step is performed manually. In the future we plan to automate it using an
additional CLANG pass after the polyhedral analysis.

Chapter 4. Optimizing memory management on heterogeneous systems. 34

1 void memory access pattern

2 (

3 OpenCLKernel∗ kerne l , /∗ Perform a n a l y s i s on t h i s k e rne l ∗/
4 Polyhedron ∗ acce s s e s , /∗ From PET∗/
5 unsigned i n t s l i c e s , /∗ Into how many par t s w i l l we

6 s p l i t the polyhedra ∗/
7 Range∗ ranges /∗ Lower/Upper bounds f o r every a c c e s s ∗/ ,

8 OpenCLKernel ∗ subke rne l s /∗ The ac tua l k e r n e l s that w i l l be executed

9 on the a v a i l a b l e compute d ev i c e s ∗/
10)

11 {
12 i n t i , j ;

13 Polyhedron access , temp ;

14 Range r ;

15 Ehrhart e ;

16

17 f o r (i = 0 ; i < s i z e (a c c e s s e s) ; ++i) {
18 a c c e s s = a s s e r t d i m e n s i o n s (a c c e s s e s [i]) ;

19 a c c e s s = i n j e c t i n i t i a l c o n s t r a i n t s (a c c e s s) ;

20 a c c e s s = minimize (a c c e s s) ;

21 i f (c a n s p l i t (a c c e s s) == true) {
22 /∗ Calcu la te the t o t a l memory f o o t p r i n t o f t h i s a c c e s s l i k e i f

23 i t were to be executed on a s i n g l e dev i c e ∗/
24 temp = p r o j e c t o u t v a r s (a c c e s s) ;

25 po lyhedron ana lyse (temp , &r , &e) ;

26 ranges = i n s e r t t o t a l r a n g e (ranges , a c c e s s . name , r , e) ;

27 f o r (j = 0 ; j < s l i c e s ; ++j) {
28 /∗ S l i c e the polyhedron in to sma l l e r par t s

29 and produce the upper/ lower bounds d e s c r i b i n g

30 which e lements are a c t u a l l y acce s s ed ∗/
31 temp = s p l i t a c c e s s (access , j , s l i c e s) ;

32 temp = p r o j e c t o u t v a r s (temp) ;

33 po lyhedron ana lyse (temp , &r , &e) ;

34 ranges = i n s e r t s u b r a n g e (ranges , a c c e s s . name , r , e) ;

35 }
36 } e l s e {
37 temp = p r o j e c t o u t v a r s (a c c e s s) ;

38 po lyhedron ana lyse (temp , &r , &e) ;

39 ranges = i n s e r t t o t a l r a n g e (ranges , a c c e s s . name , r , e) ;

40 }
41 }
42 /∗ After the ana ly s i s , the subkene l s are generated ∗/
43 subke rne l s = g e n e r a t e s u b k e r n e l s (kerne l , ranges , s l i c e s) ;

44 }

Listing 4.2: Example: Matrix multiplication in OpenCL.

Chapter 4. Optimizing memory management on heterogeneous systems. 35

Figure 4.1: Flow chart of the algorithm.

Chapter 4. Optimizing memory management on heterogeneous systems. 36

4.2 Execution

The array element ranges as well as the Ehrhart polynomials which were generated

during our memory access pattern analysis need to be accessed by the host device just

before the launch of the generated OpenCL kernels. This is essential in order to allocate

memory for the parameters on the OpenCL compute devices and to transfer the respec-

tive data. Therefore, we developed a solution to store and recall the ranges/ehrhart-

polynomials based on the Flex[23]/Bison[24] toolchain.

Furthermore, after the execution of a kernel, data may need to be rearranged in order

to get the same output as if the OpenCL kernel was executing on a single compute

device. This may happen if the output of a sub-kernel overlaps with that of another

instance. Our tool can easily detect such scenaria simply by testing the union of the

polyhedra representing the write-accessed index ranges for a given array. If an overlap

exists, i.e the union of the respective polyhedra contains more than 0 integer units, our

tool will output information indicating which arrays may need to be rearranged after the

execution of the kernels on the multiple compute devices. The user is then responsible

to construct the final output of his kernel by properly ”gluing” together the outputs of

the sub-kernels.

4.3 Vector add example

We will use the trivial example of adding two vectors in order to demonstrate our

methodology. The simplest OpenCL kernel which performs the computation can be

seen in listing 4.3. Its output is an array c, the sum of two vectors which are passed to

the kernel via the parameters a and b; all arrays three are of size N.

1 k e r n e l void vector add (g l o b a l i n t ∗c ,

2 g l o b a l const i n t ∗ a , g l o b a l i n t ∗b ,

3 unsigned i n t N)

4 {
5 i n t id = g e t g l o b a l i d (0) ;

6

7 i f (id < N) {
8 c [id] = a [id] + b [id] ;

9 }
10 }

Listing 4.3: Example: Vector addition in OpenCL.

Chapter 4. Optimizing memory management on heterogeneous systems. 37

Accesses to arrays a, b, and c are identical, thus they are described by the same poly-

hedron. We have purposely omitted the detailed process of generating the polyhedra

because a more complex example depicting the weakness of our algorithm will be pre-

sented in more detail in section 4.5.1. Pet generates the following polyhedron for the

accesses in the vector add kernel:





index

local size(0)

N

global id(0)

global size(0)


∈ Z5,



index

local size(0)

N

global id(0)

global size(0)


∗



−1 0 1 0 0 −1

0 0 0 1 0 0

1 0 0 −1 0 0

−1 1 0 1 0 −1

0 0 0 0 1 −1

0 −1 0 −1 1 1


≥



1

0

0

1

1

−1




The output of our algorithm correctly identifies that the array accessess of the kernel

before the partitioning involve the elements whose indices fall in the range [0, N − 1].

After slicing the kernel in half on dimesion X, we receive two kernels. The first includes

all work-items with global id(0) ∈
[
0, global size(0)2

)
while the second encloses work-items

with global id(0) ∈
[
global size(0)

2 , global size(0)
)

. All arrays in the first kernel access

elements whose indices belong in the range
[
0, global size(0)2

)
, whereas in the second kernel

the elements in range
[
global size(0)

2 , N
)

are accessed. The ehrhart polynomials associated

with the accesses are (12 ∗ global size(0) + [0,−1
2] ∗ global size(0)) and (N + (−1

2 ∗
global size(0) + [0,−1

2] ∗ global size(0))) respectively.

4.4 Hybrid numerical PDE solver

A partial differential equation is a differential equation which contains unknown multi-

variable functions and their partial derivatives. PDEs are used to formulate problems

involving functions of several variables, and are either solved by hand, or used to create

a relevant computer model.

We evaluated our algorithm by using it to optimize an application which solves PDEs

using a monte-carlo approach in order to reduce the complexity of the problem. It is an

attempt to provide better results for multi-physics, multi-domain PDE problems.

A solution of a PDE is generally not unique; additional conditions must generally be

specified on the boundary of the region where the solution is defined. This hybrid

methodology attempts to exploit this by splitting the initial problem into smaller ones

whose boundaries lie within the original one’s. However, in order to produce solutions

Chapter 4. Optimizing memory management on heterogeneous systems. 38

for the new set of problems conditions have to be specified for each point on the new

problems’ boundaries. This is where the monte carlo approach of the application comes

into place. First the original problem is split into smaller non-overlapping regions. Then

for each point on the boundary of each region a bumber of random walks is performed

which generates a weighted sum. This sum will be used as the boundary condition for

the point of which the paths originated. After this preprocessing step, all generated

PDEs are solved and then the total solution is constructed by merging the produced

solutions to the set of smaller PDEs.

We will use an (imaginary) application which performs weather forecasting to present a

usage scenario. Currently, in order to produce an estimation of the weather conditions

on a given region a single, quite large, PDE set is used. The boundary conditions

are supplied after measurements take place on the borders of the region (figure 4.2).

Afterwards, the PDE is solved and the results are used to produce the weather forecast.

However, this is a really expensive process time-wise. Additionaly, due to the size of the

region there is inherent heterogeneity which may result in inaccurate results.

Figure 4.2: Boundaries on the large region.

Imagine that the red dots in figure 4.2 indicate the boundary conditions for a PDE which

will be used to generate the weather report for the whole continent of Europe. However

Chapter 4. Optimizing memory management on heterogeneous systems. 39

we plan to go for vacations in Greece, therefore we wish to know the weather forecast for

a region around Greece just in case we want to visit the surrounding countries as well.

This train of thought would result in something similar to what is depicted in figure 4.3.

Figure 4.3: Boundaries on the smaller region.

Then for each point on the purple boundary a number of random walks are performed.

The idea is that the random path begins from a point on the boundary of the region

and stops when it reaches the boundary of the original problem. Each path performed

creates a number which is an estimation of the boundary condition on the origin of the

path. The average of all the generated values for a given point is the final boundary

condition for the new PDE (figure 4.4)8.

8Note that this is not an entirely realistic scenario, since we are including both land and water as
well as islands in the same region; each is described by a whole different PDE. However, we use this
figure just for the sake of illustrating the intuition behind the monte carlo approach.

Chapter 4. Optimizing memory management on heterogeneous systems. 40

Figure 4.4: Random walks, starting from one point on the boundary of the marked
region. This would be performed for a number of points on the boundary and the

remaining ones would be generated via means of interpolation.

4.4.1 Hybrid numeric PDE solver test case evaluation

In the OpenCL implementation of the algorithm, each point on the boundary is mapped

to the execution of an OpenCL work-group. As such, each work-item computes a subset

of the total number of random walks. When the number of explored paths reaches the

maximum number the intermediate results are averaged in order to produce the final

estimation for the paths’s point of origin.

Our tests showed that porting the application to OpenCL resulted in an average speedup9

of 15x allowing us to execute experiments in less than 7 hours on a GPU (GeForce GTX

480 @1401 MHz) which would execute for up to 10.8 days on a CPU (Intel(R) Core(TM)

i7 CPU 870 @ 2.93GHz).

As a preliminary step to applying our methodology we profiled the application’s execu-

tion using OpenCL on the CPU and GPU. Our experiments indicated that the optimum

setup would be to execute, concurrently, 86% of the random walks on the GPU and the

9Note that the execution time is greately affected by the nature of the experiment.

Chapter 4. Optimizing memory management on heterogeneous systems. 41

rest on the CPU. This allowed us to achieve up to 1.3x speedup over the GPU-only im-

plementation, in other words a 18.5x speedup over the CPU-only implementation. We

used our algorithm to determine which parts of the arrays had to be transferred to the

two sub-kernels. To do this, we only had to plug in our tool a set of constraints so that

the kernel partitioning scheme would produce 2 sub-kernels, one computes 86% of the

total workload and the other the remaining 16%. The speedup comes from executing

on both available devices concurrently since we can guarantee that all essential data wil

be available to the respective compute device during run-time.

4.5 Validation

Our tool performs memory access pattern analysis which, in turn, enables partitioning

the total computation workload into smaller chunks and executing them concurrently

on multiple compute devices. This benefits the software developer in multiple ways:

• The application’s performance increases.

• If a proper partition scheme is applied, then kernels which could not execute on

a single device due to hardware memory size limits they can now be sliced into

multiple subkernels which operate on a subset of the original data and subsequently

can be executed on multiple devices concurrently.

– Additionally, the SOpenCL toolchain allows us to execute such sub-kernels

on CPUs and FPGAs with minimal hassle.

During the compilation of this thesis we have ported a multithreaded application which

uses posix threads to the OpenCL programming model10. The application is a hybrid

partial differential equation solver. It is based on the idea that solving large problems

is a time and memory costly process which can be sped up by partitioning the original

problem into smaller ones. By performing a large number of random walks, starting

from integral points to the original problem, the application constructs a set of smaller

problems whose solutions, when combined, form a close approximation to the solution

of the large problem. Using our methodology we were able to get a speedup of 1, 3x by

executing the kernel on both GPU (GeForce GTX 580 @ 1564MHz) and CPU (Intel(R)

Xeon(R) CPU E5645 @ 2.40GHz).

Using the example in section 4.3 as another test case, we exploit the results of the

automatic analysis to execute the first subkernel on a GPU (GeForce GTX 480 @1401

10https://github.com/mvavalis/Hybrid-numerical-PDE-solvers/

Chapter 4. Optimizing memory management on heterogeneous systems. 42

MHz), and the second one on a CPU (Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz).

Using our tool to execute concurrently on CPU and GPU resulted in a 1, 74x speedup

over the execution of the original kernel. Furthermore, since memory is split over both

devices we can execute kernels with bigger datasets. In this particular example we

doubled the size of the original problem resulting in vectors with 24, 576, 000 integers

and utilized both CPU and GPU. The execution time was the same as adding vectors

of size 12288000 using just the GPU.

However, our experiments have shown that the partitioning scheme greatly affects the

memory requirements for the sub-kernel instances. If a partitioning scheme is not ap-

propriate for the kernel at hand, it may make poor use of the devices’s memory. In

section 4.5.1 we discuss an example to highlight the weaknesses of polyhedral analysis,

as well as the importance of properly partitioning the OpenCL kernel.

4.5.1 A pathologic example

We present below a scenario using a Matrix Multiplication OpenCL kernel. The index of

element stored in position (row, column) in a matrix with dimensions width ∗ height is

row∗width+column. One may notice that this index is not an affine combination of row,

width, and column, which forbids polyhedral analysis from being applied. However, as

long as we replace width with a fixed constant value we can use polyhedral analysis.

We use this trick to write a matrix multiplication kernel for matrices with dimensions

1000 x height stored as an 1D array. Note that height can be a parameter since, unlike

width, it does not lead to any non affine expressions.

1 k e r n e l void matr ixMult ip ly (g l o b a l f l o a t ∗c ,

2 g l o b a l const f l o a t ∗ a , g l o b a l const f l o a t ∗b)

3 {
4 i n t x = g e t g l o b a l i d (0) ;

5 i n t y = g e t g l o b a l i d (1) ;

6 f l o a t element = 0 ;

7 i n t i ;

8

9 f o r (i =0; i <1000; i++) {
10 element += a [i + y ∗1000] ∗ b [x +i ∗1 0 0 0] ;

11 }
12 c [x + y ∗1000] = element ;

13 }

Listing 4.4: Example: Matrix multiplication in OpenCL.

Chapter 4. Optimizing memory management on heterogeneous systems. 43

On a closer look one will notice that the dimensions of the matrices are hardwired in

the source code, 1000 x height. If there was an argument specifying the width and

height we would not be able to perform polyhedral analysis, since both statements

element+ = a[i+ y ∗ 1000] ∗ b[x+ i ∗ 1000]; and c[x+ y ∗ 1000] = element; would involve

array accesses with non affine indices.

We begin by using our source-to-source compiler to transform this OpenCL kernel into

C; the output is listed in snippet 4.5. We will then use this source code as input to our

memory access pattern analysis algorithm in order to retrieve the memory ranges being

used and the OpenCL sub-kernels. For the sake of demonstrating the process we will

have the algorithm partition the kernel into two sub-kernels.

1 k e r n e l void matr ixMult ip ly (g l o b a l f l o a t ∗c , g l o b a l const f l o a t ∗ a ,

2 g l o b a l const f l o a t ∗b ,

3 /∗ The arguments below were introduced by the SOPenCL f r o n t end ∗/
4 i n t g l o b a l i d x , i n t g l o b a l i d y , i n t g l o b a l i d z ,

5 i n t g l o b a l s i z e x , i n t g l o b a l s i z e y , i n t g l o b a l s i z e z ,

6 i n t work group id x , i n t work group id y , i n t work group id z ,

7 i n t l o c a l s i z e x , i n t l o c a l s i z e y , i n t l o c a l s i z e z)

8 {
9 unsigned i n t k e r n e l i , k e r n e l j , k e r n e l k ;

10 unsigned i n t x , y , i ;

11 f l o a t element ;

12

13 f o r (k e r n e l k = 0 ; k e r n e l k < l o c a l s i z e z ; k e r n e l k++) {
14 f o r (k e r n e l j = 0 ; k e r n e l j < l o c a l s i z e y ; k e r n e l j ++) {
15 f o r (k e r n e l i =0; k e r n e l i < l o c a l s i z e x ; k e r n e l i ++) {
16 x = (g l o b a l i d x + k e r n e l i) ;

17 y = (g l o b a l i d y + k e r n e l j) ;

18 element = 0 ;

19 f o r (i = 0 ; i < 1000 ; i++) {
20 element += a [i + y ∗ 1000] ∗ b [x + i ∗ 1 0 0 0] ;

21 }
22 c [x + y ∗ 1000] = element ;

23 }
24 }
25 }
26 }

Listing 4.5: Example: Matrix OpenCL kernel after OpenCL-to-C transformation.

First, PET parses the C source code and constructs the initial polyhedral model for

the example C source code. The results can be seen in table 4.2. After we inject the

initial constraints and finish minimizing the polyhedra we know that the memory access

Chapter 4. Optimizing memory management on heterogeneous systems. 44

involving array a does not depend on global id(0) but accesses to b and c do. Thus,

we receive the ranges describing the total access to a, b, and c as well as the element

ranges after the partition is performed for accesses to arrays b and c; this information

is summarized in tables 4.3 and 4.4 respectively.

Read/ Array Constraints

Write Name

R a i+ 1000 ∗ global id(1) + 1000 ∗ kernel j ≥ 0

0 ≤ i ≤ 999

0 ≤ kernel k < local size(2)

0 ≤ kernel j < local size(1)

0 ≤ kernel i < local size(0)

R b 1000 ∗ global id(0) + kernel i ≥ 0

0 ≤ i ≤ 999

0 ≤ kernel k < local size(2)

0 ≤ kernel j < local size(1)

0 ≤ kernel i < local size(0)

W c kernel i+ 1000 ∗ global id(1) + global id(0) + 1000 ∗ kernel j ≥ 0

0 ≤ kernel k < local size(2)

0 ≤ kernel j < local size(1)

0 ≤ kernel i < local size(0)

Table 4.2: Example: Initial polyhedral model.

Read/ Array Ranges Ehrhart

Write Name

R a [0, 1000 ∗ global size(1) + 999] 1000 ∗ global size(1) + 1000

R b [0, global size(0) + 999000] global size(0) + 999001

W c [0, global size(0) + 1000 ∗ global size(1)] global size(0) + (1000 ∗ global size(1) + 1)

Table 4.3: Example: Element ranges of arrays.

Essentially, the information conveyed by tables 4.3 and 4.4 is that the unpartitioned

accesses to the arrays cover all of their elements11. Moreover, after the partition step

both subkernels read all elements of matrix b and appear to write overlapped regions of

matrix c. The latter occurs because we have partitioned the original workload on one

dimension, namely x.

11The kernel is executed using the tuple < 1000,matrix height, 1 > as its NDRange.

Chapter 4. Optimizing memory management on heterogeneous systems. 45

R
ea

d
/

A
rr

ay
R

a
n

ge
s

E
h

rh
ar

t
W

ri
te

N
a
m

e

R
(b

1
) x

[0,
g
lo
ba

l
si
z
e(
0
)

2
+

9
98

99
9
]

1 2
∗
g
lo
ba
l
si
z
e(

0)
+
[99

90
00
,
1
9
9
7
9
9
9

2

] glo
ba
l
si
z
e(

0)

R
(b

2
) x

[glob
a
l
si
z
e(
0
)

2
,g
lo
ba
l
si
z
e(

0)
+

99
89

99
]

1 2
∗
g
lo
ba
l
si
z
e(

0)
+
[99

90
00
,
1
9
9
7
9
9
9

2

] glo
ba
l
si
z
e(

0)

W
(c

1
) x

[0,
g
lo
ba

l
si
z
e(
0
)

2
+

1
00

0
∗
g
lo
ba
l
si
z
e(

1)
−

1
]

1 2
∗
g
lo
ba
l
si
z
e(

0)
+

[(
10

00
∗
g
lo
ba
l
si
z
e(

1)
)

,(
10

00
∗
g
lo
ba
l
si
z
e(

1)
+
−

1 2
)]
g
lo
ba
l
si
z
e(

0)
)

W
(c

2
) x

[glob
a
l
si
z
e(
0
)

2
,g
lo
ba
l
si
z
e(

0)
+

10
00
∗
g
lo
ba
l
si
z
e(

1)
−

1
]

1 2
∗
g
lo
ba
l
si
z
e(

0)
+

[(
10

00
∗
g
lo
ba
l
si
z
e(

1)
+

0)

,(
10

00
∗
g
lo
ba
l
si
z
e(

1)
+
−

1 2
)]
g
lo
ba
l
si
z
e(

0)

R
(a

1
) y

[0
,5

0
0
∗
g
lo
ba
l
si
z
e(

1)
−

1]
50

0
∗
g
lo
ba
l
si
z
e(

1)

R
(a

2
) y

[5
00
g
lo
ba
l
si
z
e(

1
),

10
00
g
lo
ba
l
si
z
e(

1)
−

1]
50

0
∗
g
lo
ba
l
si
z
e(

1)

W
(c

1
) y

[0
,g
lo
ba
l
si
z
e(

0)
+

5
00
∗
g
lo
ba
l
si
z
e(

1)
−

10
00

]
g
lo
ba
l
si
z
e(

0)
+

(5
00
∗
g
lo
ba
l
si
z
e(

1)
+
−

99
9)

W
(c

2
) y

[5
00
∗
g
lo
ba
l
si
z
e(

1)
,g
lo
ba
l
si
z
e(

0)
+

10
00
∗
g
lo
ba
l
si
z
e(

1)
−

10
00

]
g
lo
ba
l
si
z
e(

0)
+

(5
00
∗
g
lo
ba
l
si
z
e(

1)
+
−

99
9)

T
a
b
l
e
4
.4
:

E
x
am

p
le

:
E

le
m

en
t

ra
n

ge
s

of
ar

ra
y
s

a
ff

ec
te

d
b
y

th
e

p
a
rt

it
io

n
.

T
o
p

:
p

a
rt

it
io

n
o
n

d
im

en
si

o
n

X
,

b
o
tt

o
m

p
a
rt

it
io

n
o
n

d
im

en
si

o
n

Y
.

Bibliography

[1] OpenMP Architecture Review Board, July 2011. URL http://www.openmp.org/

mp-documents/OpenMP3.1.pdf.

[2] KHRONOS Group. OpenCL application program interface version 1.2, November

2012. URL http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf.

[3] Muhsen Owaida, Nikolaos Bellas, Konstantis Daloukas, and Christos D Antonopou-

los. Synthesis of platform architectures from opencl programs. In Field-

Programmable Custom Computing Machines (FCCM), 2011 IEEE 19th Annual

International Symposium on, pages 186–193. IEEE, 2011.

[4] Motzkin, Theodore S and Raiffa, Howard and Thompson, GL and Thrall, Robert

M. The double description method. 1953.

[5] NV Chernikova. Algorithm for finding a general formula for the non-negative so-

lutions of a system of linear equations. USSR Computational Mathematics and

Mathematical Physics, 4(4):151–158, 1964.

[6] Vincent Loechner and Doran K Wilde. Parameterized polyhedra and their vertices.

International Journal of Parallel Programming, 25(6):525–549, 1997.

[7] Vincent Loechner. Polylib, February 2010. URL http://icps.u-strasbg.fr/

polylib/.

[8] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin

Grösslinger, and Louis-Noël Pouchet. Polly-polyhedral optimization in llvm. In

Proceedings of the First International Workshop on Polyhedral Compilation Tech-

niques (IMPACT), volume 2011, 2011.

[9] Jan Sjödin, Sebastian Pop, Harsha Jagasia, Tobias Grosser, Antoniu Pop, et al.

Design of graphite and the polyhedral compilation package. In GCC Developers’

Summit, 2009.

46

http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf
http://icps.u-strasbg.fr/polylib/
http://icps.u-strasbg.fr/polylib/

Bibliography 47

[10] Cedric Bastoul. Code generation in the polyhedral model is easier than you think.

In Proceedings of the 13th International Conference on Parallel Architectures and

Compilation Techniques, pages 7–16. IEEE Computer Society, 2004.

[11] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric

Bastoul. The polyhedral model is more widely applicable than you think. In Com-

piler Construction, pages 283–303. Springer, 2010.

[12] Fabien Quilleré and Sanjay Rajopadhye. Optimizing memory usage in the

polyhedral model. ACM Transactions on Programming Languages and Systems

(TOPLAS), 22(5):773–815, 2000.

[13] Fabien Quilleré, Sanjay Rajopadhye, and Doran Wilde. Generation of efficient

nested loops from polyhedra. International Journal of Parallel Programming, 28

(5):469–498, 2000.

[14] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and Maurice

Bruynooghe. Analytical computation of ehrhart polynomials: Enabling more com-

piler analyses and optimizations. In Proceedings of the 2004 international conference

on Compilers, architecture, and synthesis for embedded systems, pages 248–258.

ACM, 2004.

[15] E Ehrhart. Polynôme arithmetique et méthode des polyedres en combinatoire, 35

serie isnm, 1977.

[16] NVIDIA, August 2009. URL http://www.nvidia.com/content/cudazone/

download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf.

[17] Konstantis Daloukas, Christos D Antonopoulos, and Nikolaos Bellas. GLOpenCL:

OpenCL support on hardware-and software-managed cache multicores. In Pro-

ceedings of the 6th International Conference on High Performance and Embedded

Architectures and Compilers, pages 15–24. ACM, 2011.

[18] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong

program analysis and transformation. pages 75–88, San Jose, CA, USA, Mar 2004.

[19] Sven Verdoolaege and Tobias Grosser. Polyhedral extraction tool. In Second In-

ternational Workshop on Polyhedral Compilation Techniques (IMPACT12), Paris,

France, 2012.

[20] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Mathe-

matical Software–ICMS 2010, pages 299–302. Springer, 2010.

[21] CLANG: a c language family frontend for LLVM. URL http://clang.llvm.org/.

http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_ProgrammingGuide.pdf
http://clang.llvm.org/

Bibliography 48

[22] H Paul Williams. Fourier-motzkin elimination extension to integer programming

problems. Journal of combinatorial theory, series A, 21(1):118–123, 1976.

[23] GNU. flex: The fast lexical analyzer, . URL http://flex.sourceforge.net/.

[24] GNU. Bison - GNU parser generator, . URL http://www.gnu.org/software/

bison/.

http://flex.sourceforge.net/
http://www.gnu.org/software/bison/
http://www.gnu.org/software/bison/

