
Parallel iterative solution of the Hermite Collocation

equations on GPUs II

N. Vilanakis and E. Mathioudakis 1

Department of Sciences, Technical University of Crete, University Campus, 73100 Chania,
Crete, Greece

E-mail: nivilanakis@isc.tuc.gr, manolis@science.tuc.gr

Abstract. Hermite Collocation is a high order finite element method for Boundary Value
Problems modelling applications in several fields of science and engineering. Application of
this integration free numerical solver for the solution of linear BVPs results in a large and
sparse general system of algebraic equations, suggesting the usage of an efficient iterative solver
especially for realistic simulations. In part I of this work an efficient parallel algorithm of
the Schur complement method coupled with Bi-Conjugate Gradient Stabilized (BiCGSTAB)
iterative solver has been designed for multicore computing architectures with a Graphics
Processing Unit (GPU). In the present work the proposed algorithm has been extended for
high performance computing environments consisting of multiprocessor machines with multiple
GPUs. Since this is a distributed GPU and shared CPU memory parallel architecture, a hybrid
memory treatment is needed for the development of the parallel algorithm. The realization of
the algorithm took place on a multiprocessor machine HP SL390 with Tesla M2070 GPUs using
the OpenMP and OpenACC standards. Execution time measurements reveal the efficiency of
the parallel implementation.

1. Introduction
The Collocation discretization method, based on Hermite bi-cubic elements, is a well-known high
accurate finite element technique for solving elliptic boundary value problems (BVPs) [1, 2, 3].
Applying the method to problems on square domains, and by using uniform ns×ns discretization
and the appropriate red-black numbering of unknowns and equations [4] the resulting red-black
collocation linear system Ax = b is in 2-cyclic normal form [5], namely,[

DR HB

HR DB

] [
xR

xB

]
=

[
bR

bB

]
(1)

where the matrices DR and DB are block diagonal and nonsingular [6]. The large size of the
collocation system, especially for fine discretizations, and the demanding storage requirements
refer immediately to iterative methods for its efficient solution [7, 8, 9] on parallel computing
environments [10, 3, 11, 12]. The preconditioned BiCGSTAB [13] iterative method is an efficient
solver for the collocation linear system (1) for high performance parallel architectures [11, 10, 12].

1 This work was supported by EU (European Social Fund ESF) and Greek funds through the operational program
Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) - Research Funding
Program: THALIS.

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012097 doi:10.1088/1742-6596/490/1/012097

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

In [14] a new Schur Complement type iterative solver was proposed for multicore machines with
a Graphic Processing Unit (GPU). The method approximates iteratively only the black coloured
unknowns only, while the red ones are directly calculated from the black ones. Since the method
is based on the application of a two sided precondition technique into the linear system (1),
the iterative procedure of the algorithm for the Schur complement linear system includes an
unpreconditioned solver. The BiCGSTAB method is chosen for this purpose evaluating all the
black unknowns. Taking into account that this is the most computationally intense part of the
solution process, and more specifically the two matrix-vector multiplications involving the Schur
complement matrix for every iterative step of BiCGSTAB algorithm, a significant part of the
parallel calculations for these matrix-vector multiplications are chosen to be performed on the
GPU in order to achieve performance acceleration. The algorithm is based on the shared model
for the CPU and GPU cores. But if more than one GPU are available, which means that each
one stores the available data in its local memory, and due to the specific structure of matrices
HR and HB, there is data dependency for every matrix-vector multiplication. The following
section presents this extended hybrid algorithm based on the shared-distributed memory model
required for the case of multiple GPUs.

2. The parallel algorithm
The parallel algorithm for shared memory architectures in [14] is based on a specific mapping
of unknowns into the CPU/GPU computational threads permitting uniform load balancing for
the computation among cores, minimizing the communication cost between threads and shared
memory and also eliminating the idle core threads during the parallel procedures. Following
the same mapping of unknowns in case of N number of GPUs available and for even k = ns

N
the parallel procedures of t = HRz and q = HBs GPU matrix vector multiplications have to
use GPU and CPU core threads in order to avoid transferring multiple data copies from CPU
memory to each GPU local memory. The core threads for every GPU j = 1, . . . , N calculate the
vector parts tl and ql with l = (j−1)k+1, . . . , jk being the number of subvectors of length 2ns.
For the evaluation on the jth GPU of subvectors t(j−1)k+1,t(j−1)k+2,tjk−1, tjk, q(j−1)k+1 and
qjk the subvectors z(j−1)k,zjk+1,s(j−1)k−1,s(j−1)k,sjk+1 and sjk+2 are needed, which have
been stored on the j − 1 and j + 1 GPU’s local memories. For this reason these operations are
performed by CPU core threads, since the required data vectors are also stored on the CPU’s
shared memory.

The above are implemented in the parallel algorithm that follows and describes the t = HRz
GPU/CPU matrix vector multiplication.

!$OMP PARALLEL

k = ns
N

call acc device num(j,acc device nvidia)

!$ACC KERNELS COPYIN(z((j − 1)k + 1 : jk)) COPYOUT(t((j − 1)k + 1 : jk))

!$ACC LOOP INDEPENDENT

do l = (j − 1)k + 1 to jk

The jth GPU computes tl
enddo

!$ACC END KERNELS
!$OMP SECTION

The jth CPU core computes t(j−1)k+1 , t(j−1)k+2 , tjk−1 , tjk

!$OMP END SECTION
!$OMP END PARALLEL

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012097 doi:10.1088/1742-6596/490/1/012097

2

The GPU/CPU matrix vector multiplication q = HBs can be described with the following
analogous parallel algorithm

!$OMP PARALLEL

k = ns
N

call acc device num(j,acc device nvidia)

!$ACC KERNELS COPYIN(s((j − 1)k + 1 : jk)) COPYOUT(q((j − 1)k + 1 : jk))

!$ACC LOOP INDEPENDENT

do l = (j − 1)k + 1 to jk

The jth GPU computes ql
enddo

!$ACC END KERNELS
!$OMP SECTION

The jth CPU core computes q(j−1)k+1 , qjk

!$OMP END SECTION
!$OMP END PARALLEL

We point out that, for the efficient implementation of the above algorithm parts at least N
CPU core threads have to be available. The CPU threads for j = 1, . . . , N manage the GPU
processes. More specifically, each one loads the required data from the CPU shared memory and
transfers it to the corresponding GPU local memory. When all GPU calculations are performed
the same CPU thread transfers the data from GPU’s memory back to the CPU’s memory. This
is expressed in the above algorithms by the outer OMP PARALLEL procedure. The OpenACC
subroutine acc device num assigns each GPU card to a CPU core thread created by the OMP
parallel region.

3. Realization on a Shared-memory parallel computer with GPUs
The shared memory machine HP SL390s G7 consists of a 6-core Xeon X5660@2.8GHz type
processor with 12 MB Level 3 cache memory. The total memory is 24 GB and the operating
system is Oracle Linux version 6.2. This machine is also equipped with two Fermi edition Tesla
M2070 GPUs [15] connected via PCI-e gen2 slots. Each GPU has 6GB of memory and 448 cores
on 14 multiprocessors. The application is developed in double precision Fortran code using
OpenMP [16, 17] and OpenACC [18] standards with PGI’s compilers [19] version 12.9. The
basic linear algebra operations subroutines from scientific libraries BLAS and LAPACK [20] are
considered.

For the implementation of the above parallel algorithm the test Dirichlet modified Helmholtz
problem, which accepts the following exact solution

u(x, y) = 10 φ(x) φ(y) , φ(x) = e−100(x−0.1)2(x2 − x),

with parameter λ = 1 was solved.
For the algorithm’s performance investigation a single CPU core thread is used for the CPU

implementation, while for the CPU/GPU implementations the CPU core threads where as many
as the number of GPU cards. Several problem sizes are solved for ns = 256 up to 2048 finite
elements in each spatial direction. As every Hermite collocation finite element has 16 degrees of
freedom the total degrees of freedom for every problem size is 16n2s. For example in the case of
the finest problem the total degrees of freedom are more than 67 millions.

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012097 doi:10.1088/1742-6596/490/1/012097

3

Table 1 presents the total computation time in seconds and the speedup measurements using
only the CPU , the CPU and one GPU card and finally cores from CPU and the two GPUs for
all problem sizes.

Table 1. Speedup and time execution measurements in seconds.
ns CPU CPU + GPU CPU + 2GPUs

time time speedup time speedup

256 12.24 11.18 1.09 8.58 1.42
512 88.83 71.25 1.25 54.61 1.63
1024 750.35 549.82 1.37 399.42 1.88
2048 9176.02 6770.11 1.36 5209.01 1.76

As expected the size of the problem and the GPU number affect the algorithm performance.
An acceleration performance of almost 50% is observed using all available GPU cores for fine
discretization problems.

Acknowledgment
The present research work has been co-financed by the European Union (European Social
Fund ESF) and Greek national funds through the Operational Program Education and Lifelong
Learning of the National Strategic Reference Framework (NSRF) - Research Funding Program:
THALIS. Investing in knowledge society through the European Social Fund.

References
[1] Christara C C 1996 Advances in Engineering Software 27 71–89
[2] Houstis C E, Houstis E N and Rice J 1997 Par. Comp. 5 141163
[3] Mathioudakis E, Papadopoulou E and Saridakis Y 1996 Parallel Algorithms and Applications 8 141–154
[4] Mathioudakis E, Papadopoulou E and Saridakis Y 2004 Computers and Maths with Appl. 48 951–970
[5] Varga R 2000 Matrix Iterative Analysis (New York: Springer Verlag)
[6] Papatheodorou T 1983 Math. Comp. (41),164 511–525
[7] Saad Y 2003 Iterative methods for sparse linear systems (SIAM)
[8] Dongarra J, Duff I, Sorensen D and van der Vorst H 1998 Numerical Linear Algebra for high-performance

computers (Phil.: SIAM)
[9] Mathioudakis E, Papadopoulou E and Saridakis Y 2006 WSEAS Trans. on Mathematics (5),7 811–816

[10] Brill S H and Pinder G F 2002 Parallel Computing 28 399–414
[11] Mathioudakis E, Papadopoulou E and Saridakis Y 2003 Numerical Mathematics and advanced applications

- ENUMATH 2001, Springer 957–966
[12] Mathioudakis E and Papadopoulou E 2007 Int. J. App. Maths and comp. sciences (4),3 179–184
[13] van der Vorst H A 1992 SIAM J. Sci.Stat.Comp. 13 631–644
[14] Mathioudakis E, Vilanakis N, Papadopoulou E and Saridakis Y Parallel iterative solution of the hermite

collocation equations on gpus Proc. of the World Congress on Engeneering 2013 (WCE2013, Imperial
College - London, U.K.), Best Paper Award of The 2013 International Conference of Parallel and
Distributed Computing vol 2 pp 1281–1286 URL http://www.iaeng.org/publication/WCE2013/WCE2013_

pp1281-1286.pdf

[15] http://www.nvidia.com/object/tesla-servers.html
[16] Rohit C 2001 Parallel programming with OpenMP (M. K.)
[17] http://www.openmp.org
[18] http://www.openacc.org
[19] http://www.pgroup.com
[20] http://www.netlib.org

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012097 doi:10.1088/1742-6596/490/1/012097

4

