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Abstract. Motivated by proliferation-diffusion mathematical models for studying highly
diffusive brain tumors, that also take into account the heterogeneity of the brain tissue, in the
present work we consider a multi-domain linear reaction-diffusion equation with a discontinuous
diffusion coefficient. For the solution of the problem at hand we implement Fokas transform
method by directly following, and extending in this way, our recent work for a white-gray-
white matter brain model pertaining to high grade gliomas. Fokas’s novel approach for the
solution of linear PDE problems, yields novel integral representations of the solution in the
complex plane that, for appropriately chosen integration contours, decay exponentially fast
and converge uniformly at the boundaries. Combining these method-inherent advantages with
simple numerical quadrature rules, we produce an efficient method, with fast decaying error
properties, for the solution of the discontinuous reaction-diffusion problem.

1. Introduction
Reaction-diffusion linear PDEs have been the core biomathematical model for studying highly
invasive and aggressive forms of brain tumors for many years now (e.g. [1] and the references
therein). The incorporation (cf. [2], [3]) of brain’s tissue heterogeneity (white-gray matter) into
the basic model led to the differential equation:

∂c

∂t
= ∇ · (D(x)∇c) + ρc, (1)

where c(x, t) denotes the tumor cell density at location x and time t, ρ denotes the net
proliferation rate, and D(x) is the diffusion coefficient representing the active motility of
malignant cells satisfying:

D(x) =

{
Dw, x in white matter
Dg, x in gray matter

, (2)

where Dw and Dg are scalars and Dw > Dg. The model formulation had zero flux boundary
conditions, which impose no migration of cells beyond the brain boundaries, and an initial
condition c(x, 0) = f(x), where f(x) is the initial spatial distribution of malignant cells.

Using the classical transformation c(x, t) = etu(x, t), the dimensionless initial-boundary value
problem (cf. [2], [4]), in 1D, may be written as ut = (Dux)x, x ∈ [a, b], t ≥ 0

ux(a, t) = 0 and ux(b, t) = 0
u(x, 0) = f(x) :=

∑
δ(x− ξi), ξi ∈ (a, b)

, (3)
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where δ(x) denotes Dirac delta function.
Due to brain tissue heterogeneity, the domain [a, b] is considered partitioned into n+1 regions

Rj := (wj−1, wj), with a ≡ w0 < w1 < w2 < . . . < wn < wn+1 ≡ b, and if, for some j, Rj is white
matter region, then Rj−1 and Rj+1 are grey matter regions. Thus, the dimensionless diffusion
coefficient D(x) is defined to be:

D(x) = γj , x ∈ Rj , j = 1, . . . , n+ 1 with γj :=

{
Dg/Dw, when Rj is grey matter

1, when Rj is white matter
. (4)

Furthermore, notice that the parabolic nature of the problem directly implies continuity of both
u and Dux across each interface point wj . Hence:

u(wj , t) := lim
x→w+

j

u(x, t) = lim
x→w−j

u(x, t), ∀j = 1, 2, . . . , n (5)

Dux(wj , t) := lim
x→w+

j

D(x)ux(x, t) = lim
x→w−j

D(x)ux(x, t), ∀j = 1, 2, . . . , n. (6)

t

a w1 w2 w3 w4 wn−1 wn

x

b

u
x

=
0

u
x

=
0

ut = γ1uxx ut = γ2uxxut = γ3uxx ut = γ4uxx ut = γnuxx ut = γn+1uxx

u(x, 0) = f(x)

Figure 1. The multi-domain initial-boundary value problem

With the multi-domain problem depicted in Figure 1 above, we proceed, in Section 2, with
the development of Fokas method (cf. [5], [6]) for its solution and the numerical investigation of
its behaviour in Section 3.

2. Fokas Method
Let u(j)(x, t) denote the solution of the multi-domain problem defined over Rj := [wj−1, wj ].
Namely,

u(j)(x, t) :=


u(x, t), x ∈ Rj
limx→w+

j−1
u(x, t), x = wj−1

limx→w−j
u(x, t), x = wj

, j = 1, . . . , n+ 1, (7)

and, naturally,

u(j)x (wj−1, t) := lim
x→w+

j−1

ux(x, t) and u(j)x (wj , t) := lim
x→w−j

ux(x, t) . (8)

Apparently then,

u
(j)
t = (γju

(j)
x )x = γju

(j)
xx , (9)

while, recalling the constrains (5)-(6), there also holds:

u(j)(wj , t) = u(j+1)(wj , t) and γju
(j)
x (wj , t) = γj+1u

(j+1)
x (wj , t) . (10)
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Working similarly as in [4], we write equation (9) in divergence form

(e−ikx+γjk
2tu(j))t − (e−ikx+γjk

2tγj(u
(j)
x + iku(j)))x = 0 , k ∈ C arbitrary, (11)

and by integrating over Aj := {(x, t) : x ∈ Rj , 0 ≤ t ≤ T}, using Green’s Theorem and Fourier
transforms we obtain the ”global relation” in the form:

eγjk
2tû(j)(k, t) = f̂ (j)(k) − γje

−ikwj−1
[
ũ
(j)
x (wj−1, γjk

2) + ikũ(j)(wj−1, γjk
2)
]

+ γje
−ikwj

[
ũ
(j)
x (wj , γjk

2) + ikũ(j)(wj , γjk
2)
]
,

(12)

where

f̂ (j)(k) =

∫ wj

wj−1

e−ikxf (j)(x)dx, û(j)(k, t) =

∫ wj

wj−1

e−ikxu(j)(x, t)dx, (13)

and

ũ(j)(x, γjk
2) :=

∫ T

0
eγjk

2tu(j)(x, t)dt, ũ(j)x (x, γjk
2) :=

∫ T

0
eγjk

2tu(j)x (x, t)dt. (14)

Inverting the windowed Fourier transform û(j)(k, t), setting k2 ← γjk
2, cj ← γ

−1/2
j , applying

conditions (10), and after some algebraic manipulations we find that the solution, for all
j = 1, 2, . . . , n, is given by

u(j)(x, t) =
cj
2π

∫ +∞

−∞
eicjkx−k

2tf̂ (j)(cjk)dk

− 1

2πcj

∫ +∞

−∞
eicjk(x−wj−1)−k2t[

γj−1
γj

ũ(j−1)x (wj−1, k
2) + icjkũ

(j−1)(wj−1, k
2)]dk

+
1

2πcj

∫ +∞

−∞
eicjk(x−wj)−k2t[ũ(j)x (wj , k

2) + icjkũ
(j)(wj , k

2)]dk ,

(15)

where ũ
(j)
x (wj , k

2) and ũ(j)(wj , k
2) are given by the following 2(n+ 1)× 2(n+ 1) linear system:

Gũ = f̂ , (16)

where:

G =



A
(1)
1 A

(1)
3 A

(1)
4 0 0 · · · 0 0 0 0 0

A
(1)
5 A

(1)
7 A

(1)
8 0 0 · · · 0 0 0 0 0

0 A
(2)
1 A

(2)
2 A

(2)
3 A

(2)
4 · · · 0 0 0 0 0

0 A
(2)
5 A

(2)
6 A

(2)
7 A

(2)
8 · · · 0 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 0 · · · A
(n)
1 A

(n)
2 A

(n)
3 A

(n)
4 0

0 0 0 0 0 · · · A
(n)
5 A

(n)
6 A

(n)
7 A

(n)
8 0

0 0 0 0 0 · · · 0 0 A
(n+1)
1 A

(n+1)
2 A

(n+1)
3

0 0 0 0 0 · · · 0 0 A
(n+1)
5 A

(n+1)
6 A

(n+1)
7


,

i A
(j)
i

1 icjγjke
−icjkwj−1

2 γj−1e
−icjkwj−1

3 −icjγjke−icjkwj

4 −γje−icjkwj

5 −icjγjkeicjkwj−1

6 γj−1e
icjkwj−1

7 icjγjke
icjkwj

8 −γjeicjkwj

, ũ =



ũ(1)(w0, k
2)

ũ(1)(w1, k
2)

ũ
(1)
x (w1, k

2)
...

ũ(n)(wn, k
2)

ũ
(n)
x (wn, k

2)

ũ(n+1)(wn+1, k
2)


and f̂ =



f̂ (1)(c1k)

f̂ (1)(−c1k)

f̂ (2)(c2k)

f̂ (2)(−c2k)
...

f̂ (n)(cnk)

f̂ (n)(−cnk)

f̂ (n+1)(cn+1k)

f̂ (n+1)(−cn+1k)


.
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Finally we point out that the analytic nature of the integrand functions in relation (15) above
allows the determination of appropriate integration contours in the complex plane (cf. [7], [4])
to achieve fast decay of the integrands hence stability of the whole calculation.

3. Numerical Solution
Following our work in [4], to numerically evaluate the integrals in relation (15) above, we apply
the trapezoid rule on appropriate hyperbolic contours (cf. [8]) defined by mapping the points θ
on the real line to the points ±k(θ) of the complex plane, where kθ ≡ k(θ) := i sin(β − iθ).

The numerical model used in our experiments is described by:

[a,w1, w2, w3, w4, w5, b] = [−4,−2,−1.5, 0, 3, 4, 5], γ1 = Dg/Dw = 0.2, ξ1 = −3 .ξ2 = 2.5 (17)

The relative error used in our calculations is given by EN := ‖uNi+1 − uNi‖∞/‖uNi+1‖∞, where
N denotes the number of quadrature points, and is depicted in Figure 2 that follows.
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Figure 2. Time evolution of cell density c(x, t) and the corresponding relative error EN

4. Conclusion
The Fokas transform method, combined with numerical integration on hyperbolic contours, is
applied to the solution of a multi-domain brain tumor invasion model. The analytical solution is
produced in integral form at any space-time point and evaluated by a fast convergent quadrature.
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