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Abstract. Fisher’s equation has been widely used to model the biological invasion of single-
species communities in homogeneous one dimensional habitats. In this study we develop high
order numerical methods to accurately capture the spatiotemporal dynamics of the generalized
Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent
non-linear diffusion. Working towards this direction we consider strong stability preserving
Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation
(HC) spatial discretization method. We investigate their convergence and stability properties
to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation.
The Hadamard product is used to characterize the collocation discretized non linear equation
terms as a first step for the treatment of generalized systems of relevant equations. Numerical
experimentation is included to demonstrate the performance of the methods.

1. Introduction
One way to incorporate density-dependent species motility, such as small scale migrations,
to the Fisher-Kolmogorov ([1], [2]) classical biological invasion model, is by replacing the
constant diffusion coefficient D by a density-dependent D(u) one (cf. [3], [4], [5] and the
references therein). Assuming that the diffusivity depends linearly on density (cf. [6]), namely
D(u) = λ0u+ λ1, the generalized Fisher’s equation takes the form:

ut = [(λ0u+ λ1)ux]x + λ2u− λ3u
2 (1)

where u ≡ u(x, t), x ∈ [a, b], t ∈ [0, T ] and λi ∈ R, for i = 0, 1, 2, 3, with λ2λ3 > 0, while
Neumann boundary conditions ux(a, t) = 0 and ux(b, t) = 0 are imposed at the boundaries and
an initial density distribution u(x, 0) = f(x) is assumed. As exact solutions have been recently
derived (cf. [6]), equation (1) can play the role of a model problem for investigating the behavior
of numerical techniques.

Working towards the development of high order numerical schemes, in Section 2 we implement
the Hermite Collocation (HC) method to discretize in space and we use the Hadamard product
to characterize the non linear equation terms. In Section 3, explicit (to avoid solving nonlinear
systems) Strong Stability Preserving (SSP) Runge-Kutta time discretization schemes are coupled
with the HC method. Their efficiency, convergence and ability to maintain strong stability are
investigated in Section 4 through numerical experimentation.
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2. Hermite Collocation (HC) Spatial Discretization Method
Assuming sufficiently smooth solutions of equation (1), a uniform partition of [a, b] into N
subintervals, with spacing h = (b−a)/N and nodes xj := a+ jh , j = 1, . . . , N +1, the Hermite
Collocation method seeks O(h4) approximations in the form:

U(x, t) =
N+1∑
j=1

[α2j−1(t)ϕ2j−1(x) + α2j(t)ϕ2j(x)] (2)

where ϕ2j−1(x) and ϕ2j(x) are the Hermite cubic basis functions, defined by

ϕ2j−1(x) =



ϕ
(
xj−x
h

)
, x ∈ Ij−1

ϕ
(
x−xj

h

)
, x ∈ Ij

0 , otherwise

, ϕ2j(x) =



−hψ
(
xj−x
h

)
, x ∈ Ij−1

hψ
(
x−xj

h

)
, x ∈ Ij

0 , otherwise

(3)

with Ij = [xj , xj+1] , j = 1, . . . , N , and ϕ(s) = (1− s)2(1+ 2s) , ψ(s) = s(1− s)2 for s ∈ [0, 1].

Substitution of the approximate solution (2) into equation (1) yields a residual

R(x, t) := Ut − [(λ0U + λ1)Ux]x + λ2U − λ3U
2 . (4)

The Collocation method at the Gauss points (cf. [7]) produces a system of algebraic equations,
for the evaluation of the unknown parameters αi ≡ αi(t) , i = 1 . . . , 2(n + 1), by forcing the
residualR(x, t) to vanish at the two Gaussian interior collocation points per subinterval. In doing
so, the two elemental collocation equations that correspond to the element Ij , j = 1, . . . , N
may be written in the matrix form:

C
(0)
j

 α̇2j−1

α̇2j

α̇2j+1

α̇2j+2

 = λ0


C

(1)
j

 α2j−1

α2j

α2j+1

α2j+2


 ◦

C
(1)
j

 α2j−1

α2j

α2j+1

α2j+2


+

C
(0)
j

 α2j−1

α2j

α2j+1

α2j+2


 ◦

C
(2)
j

 α2j−1

α2j

α2j+1

α2j+2





+λ1C
(2)
j

 α2j−1

α2j

α2j+1

α2j+2

+ λ2C
(0)
j

 α2j−1

α2j

α2j+1

α2j+2

− λ3

C
(0)
j

 α2j−1

α2j

α2j+1

α2j+2
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C
(0)
j

 α2j−1

α2j

α2j+1
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 (5)

where α̇i ≡ dαi
dt and

C
(k)
j =

1

hk

[
s
(k)
1 hs

(k)
2 s

(k)
3 hs

(k)
4

s
(k)
3 hs

(k)
4 s

(k)
1 hs

(k)
2

]
with

s1 =


9+4

√
3

18
−1

−2
√
3

s2 =


3+

√
3

36√
3
6

−1−
√
3

s3 =


9−4

√
3

18
1

2
√
3

s4 =


3−

√
3

36 , for k = 0

−
√
3
6 , for k = 1

−1 +
√
3 , for k = 2

.

In the above equations the symbol ◦ denotes the Hadamard matrix product. Apparently, the
collocation discretized non-linear terms are formed as the Hadamard matrix product of the
collocation discretized corresponding linear terms.

Furthermore, the additional two needed equations are obtained by forcing the approximate
solution U(x, t), to satisfy the boundary conditions. This directly implies that

α2 = 0 , α2N+2 = 0 hence also α̇2 = 0 , α̇2N+2 = 0
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Careful assembling now all the interior and boundary collocation equations, described above,
we obtain the ODE system:

ȧ = C(a) (6)

C(a, t) := C(0)−1
[
λ0

(
C(1)a ◦ C(1)a+ C(0)a ◦ C(2)a

)
+ λ1C

(2)a+ λ2C
(0)a− λ3C

(0)a ◦ C(0)a
]

where C(k) , k = 0, 1, 2 denotes the one dimensional Collocation matrix corresponding to
the k-th derivative, a ≡ a(t) = [α1 α3 . . . α2N+1]

T denotes the vector of unknowns and

ȧ := d
dt a = [α̇1 α̇3 . . . α̇2N+1]

T . We note that the linear independence of the Hermite cubic

basic functions implies the non-singularity of the matrix C(0).

3. Strong Stability Preserving Runge-Kutta Time Discretization Schemes
High order strong stability preserving (SSP) Runge-Kutta methods were developed (cf. [8],
[9], [10]) for the time discretization of the semi-discrete system of ODEs obtained from the
spatial discretization of PDEs by a Total Variation Diminishing (TVD) finite difference or finite
element method. The essence of the SSP class of time discretization methods lies on their ability
to maintain strong stability in any given norm || · ||, that is to say

||an+1|| ≤ ||an|| , an := a(tn) with tn := n∆t , n = 0, 1, . . . (7)

assuming that forward Euler is strongly stable and providing suitable restrictions of the time
stepping, while fully preserving the order of the error of the spatial discretization.

General m stage and order p SSP schemes are denoted by SSP(m,p) or SSPRK(m,p). In this
work we consider two optimal (cf. [11], [12]) SSP(3,3) and SSP(4,3) schemes for the solution of
the semi-discrete ODE system in (6). They can be written in the form:

SSP (4, 3) SSP (3, 3)

a(1) = an + 1
2∆tC(a

n) a(1) = an +∆tC(an)

a(2) = a(1) + 1
2∆tC(a

(1)) a(2) = 3
4a

n + 1
4a

(1) + 1
4∆tC(a

(1))

a(3) = 2
3a

n + 1
3a

(2) + 1
6∆tC(a

(2)) an+1 = 1
3a

n + 2
3a

(2) + 2
3∆tC(a

(2))

an+1 = a(3) + 1
2∆tC(a

(3))

We note that the classical RK4 is also considered and used in our experiments for comparison
purposes.

4. Numerical Results
The model problem used to investigate the performance of the HC-RK methods is given by

ut = [(1− u)ux]x + 2u− 2u2 , − 5π/2 ≤ x ≤ 5π/2, 0 ≤ t ≤ T

ux(
−5π

2
, t) = 0, ux(

5π

2
, t) = 0 , u(x, 0) =

1

3
[2 + sin (−x)] (8)

and admits the analytical solution u(x, t) = 1
3

[
e−t(3e2t+1+2 sin (−x))

et+e−t

]
. The spatial absolute error

used in all experiments is defined as En := ||U(x, tn)−u(x, tn)||2 and the necessary time stepping
restrictions imposed are ∆t ≤ 1

5h
2 for SSP(4,3), ∆t ≤ 1

10h
2 for SSP(3,3) and ∆t ≤ 0.3h3 for

RK4. Under these restrictions all time discretization schemes were strongly stable, as it is
depicted in Figure 1b for SSP(4,3) while, at the same time, the O(h4) order of convergence
of the HC method is preserved (see Table I). The maximum E1 = max

n
{En} error norm and

the computational time needed to reach the time level t = 1 are also included in Table I to
demonstrate the efficiency of the methods.

2nd International Conference on Mathematical Modeling in Physical Sciences 2013 IOP Publishing
Journal of Physics: Conference Series 490 (2014) 012133 doi:10.1088/1742-6596/490/1/012133

3



0
0.5

1
1.5

2
2.5

3
3.5

4

−6
−4

−2
0

2
4

6

0.4

0.5

0.6

0.7

0.8

0.9

1

tx
0 0.5 1 1.5 2 2.5 3 3.5 4

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

t

Sp
at

ia
l A

bs
ol

ut
e 

Er
ro

r

 

 
  N=32
  N=64
  N=128
  N=256
  N=512

(a) (b)

Figure 1. a) Exact (solid) and HC-SSPRK(4,3) approximate (point) solutions for N = 64
b) Spatial absolute error as a function of time for the HC-SSPRK(4,3)

TABLE I Computational Performance of HC-RK schemes
Spatial Absolute Error at t = ∆t Spatial Order of Convergence Time (sec)

N SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK4 SSP(4,3) SSP(3,3) RK4

32 1.53e-04 1.56e-04 1.53e-04 - - - 0.01 0.03 0.02

64 9.85e-06 9.89e-06 9.89e-06 3.95 3.98 3.95 0.05 0.05 0.15

128 6.20e-07 6.20e-07 6.21e-07 3.99 3.99 3.99 0.14 0.20 1.60

256 3.88e-08 3.89e-08 3.89e-08 4.00 4.00 4.00 0.72 1.07 19.78

512 2.56e-09 2.56e-09 2.56e-09 3.93 3.93 3.93 4.28 6.48 269.91

5. Conclusion
In this work, the fourth order HC is coupled to third order SSPRK schemes for the treatment
of a generalized Fisher equation. Numerical evidence is presented for the method’s efficient and
stable behaviour (Table I) as well as the method’s ability to maintain strong stability (Fig. 1b).
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