Parallel Iterative solution of the Hermite Collocation Equations on GPUs

Emmanuel N. Mathioudakis

Co-Authors : Elena Papadopoulou – Yiannis Saridakis – Nikolaos Vilanakis

TECHNICAL UNIVERSITY OF CRETE DEPARTMENT OF SCIENCES APPLIED MATHEMATICS AND COMPUTERS LABORATORY 73100 CHANIA - CRETE - GREECE

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο

ΠΑΙΛΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΟΝ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

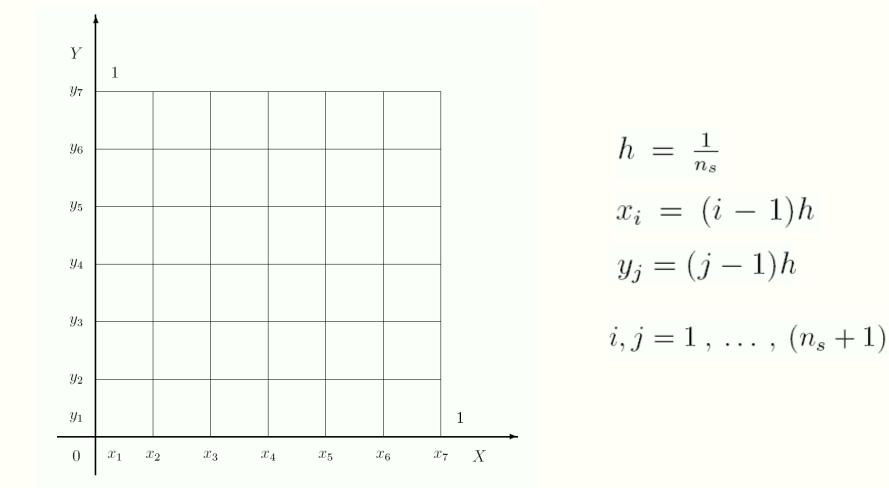
Talk Overview

- Hermite Collocation for elliptic BVPs & Derivation of the Collocation linear system
- Development of a parallel algorithm for the Schur Complement method on Shared Memory Parallel Architectures
- Parallel implementation on multicore computers with GPUs

Hermite Collocation Method

$$\mathcal{L}u(x,y) = f(x,y) , \quad (x,y) \in \Omega$$

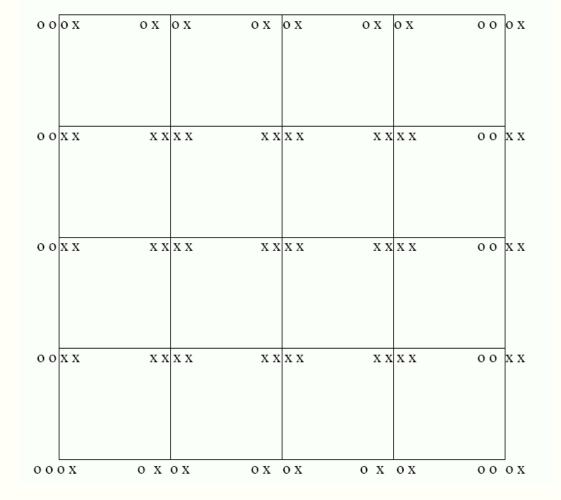
$$\mathcal{B}u(x,y) = g(x,y) , \quad (x,y) \in \partial\Omega$$


$$u(x,y) \sim u_n(x,y) = \sum_{i=1}^{\tilde{n}} \sum_{j=1}^{\tilde{n}} a_{i,j} \underbrace{\phi_i(x)\phi_j(y)}_{Hermite\ Cubics}$$

$$a_{i,j} : \begin{cases} \mathcal{L}u(\sigma_i^x, \sigma_j^y) - f(\sigma_i^x, \sigma_j^y) = 0 &, \quad (\sigma_i^x, \sigma_j^y) \in \Omega \\ \mathcal{B}u(\xi_i^x, \xi_j^y) - g(\xi_i^x, \xi_j^y) = 0 &, \quad (\xi_i^x, \xi_j^y) \in \partial\Omega \end{cases}$$

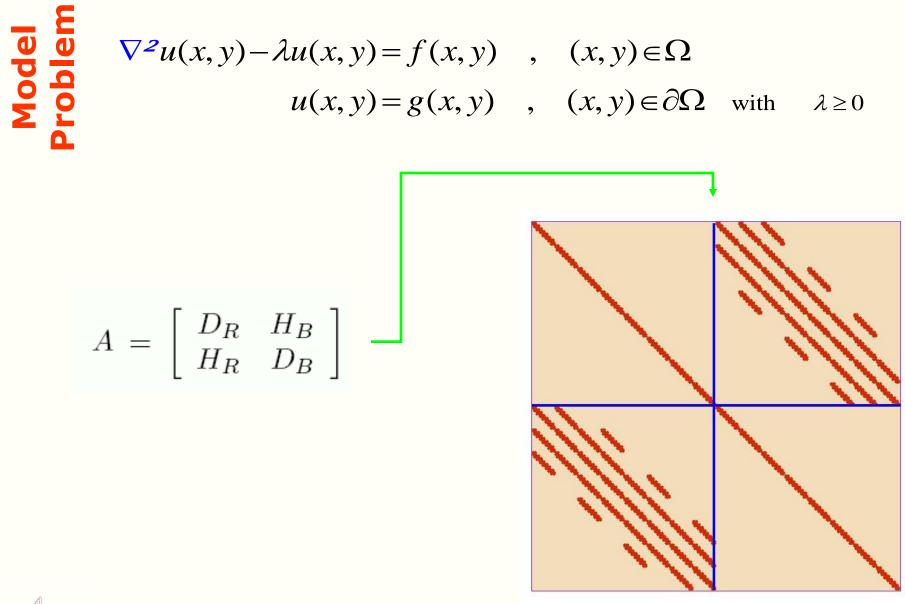
Flermite Collocation Method...

Flermite Collocation Method...


$$\begin{cases} u_n(x_i, y_j) = a_{2i-1, 2j-1} , \quad h \frac{\partial}{\partial y} u_n(x_i, y_j) = a_{2i-1, 2j} \\ h \frac{\partial}{\partial x} u_n(x_i, y_j) = a_{2i, 2j-1} , \quad h^2 \frac{\partial^2}{\partial x \partial y} u_n(x_i, y_j) = a_{2i, 2j} \end{cases}$$

Г									1
000	ох	0 X	o x	о х	o x	0 X	o x	00	ох
002	хх	X X	ХХ	хх	хх	X X	ХХ	00	хх
0 0 2	v v	X X	v v	v v	хх	v v	ХX	00	хх
002	^ ^	лл	ΛΛ	~ ~ ~	лл	~ ~ ~	A A	00	лл
002	хх	ХХ	хх	хх	хх	ХХ	хх	00	хх
000	X	ох	o x	о х	ох	ох	o x	00	оx

0 0 0 X	0 X 0 X	οχοχ	0 X 0 X	0 0 0 X
0 0 X X	x x x x	xxxx	x x x x	00 X X
0 0 X X	x x x x	xxxx	x x x x	<u>00</u> x x
0 0 X X	x x x x	xxxx	x x x x	00 X X
0 0 0 X	0 X 0 X	0 X 0 X	0 X 0 X	00 0 X

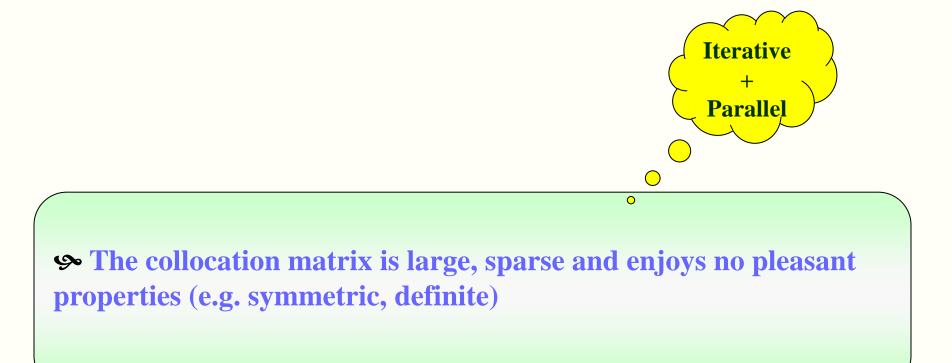


0 0 0 8 0 40 0 48 0 16 0 24 0 56 0 64 0 0 0 32 0 0 67 38 39 46 47 14 15 22 23 54 55 62 63 0 0 30 31 0 0 4 5 36 37 44 45 12 13 20 21 52 53 60 61 0 0 28 29 0 0 2 3 34 35 42 43 10 11 18 19 50 51 58 59 0 0 26 27					
0 0 6 7 38 39 46 47 14 15 22 23 54 55 62 63 0 0 30 31 0 0 4 5 36 37 44 45 12 13 20 21 52 53 60 61 0 0 28 29	0008	o 40 o 48	o 16 o 24	0 56 0 64	00032
o o 4 5 36 37 44 45 12 13 20 21 52 53 60 61 0 0 28 29					
o o 4 5 36 37 44 45 12 13 20 21 52 53 60 61 0 0 28 29					
o o 4 5 36 37 44 45 12 13 20 21 52 53 60 61 0 0 28 29					
o o 4 5 36 37 44 45 12 13 20 21 52 53 60 61 0 0 28 29					
o o 4 5 36 37 44 45 12 13 20 21 52 53 60 61 0 0 28 29					
	0067	38 39 46 47	14 15 22 23	54 55 62 63	00 30 31
	1.5	26.27 44.45	10 12 00 01	52 52 (0 (1	20.20
o o 2 3 34 35 42 43 10 11 18 19 50 51 58 59 0 0 26 27	0045	36 37 44 45	12 13 20 21	52 53 60 61	0 0 28 29
o o 2 3 34 35 42 43 10 11 18 19 50 51 58 59 o o 26 27					
o o 2 3 34 35 42 43 10 11 18 19 50 51 58 59 o o 26 27					
o o 2 3 34 35 42 43 10 11 18 19 50 51 58 59 o o 26 27					
0 0 2 3 34 35 42 43 10 11 18 19 50 51 58 59 0 0 26 27					
	0.023	34 35 42 43	10 11 18 19	50 51 58 59	0 0 26 27
	0023	51 55 12 15	10 11 10 15	50 51 50 57	00 20 27
0001 0 33 0 41 0 9 0 17 0 49 0 57 0 0 0 25	0001	o 33 o 41	o9 o17	o 49 o 57	00 0 25

0008	o 40 o 48	o 16 o 24	0 56 0 64	0 0 0 32
8	(40) (48)	16 24	56 64	32
7	39 (47)	15 23	55 63	31)
0067	38 39 46 47	14 15 22 23	54 55 62 63	o o 30 31
(6)	(38) (46)	14 22	(54) (62)	(30)
(5)	37 (45)	13 21	53 61	29
o o 4 5	36 37 44 45	12 13 20 21	52 53 60 61	0 0 28 29
4	36 (44)	(12) (20)	(52) (60)	28
3	35 (43)	11) 19	(51) (59)	2)
0 0 2 3	34 35 42 43	10 11 18 19	50 51 58 59	0 0 26 27
(2)	(34) (42)	(10) (18)	(50) (58)	(26)
	(33) (41)	9 17	49 57	23
0001	o 33 o 41	o9 o17	o 49 o 57	00 0 25

Helmholtz Collocation Matrix $H_B = - \begin{bmatrix} A_3 & -A_4 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ A_3 & A_4 & A_3 & -A_4 & \cdots & 0 & 0 & 0 & 0 \\ -A_3 & -A_4 & A_3 & -A_4 & \cdots & 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & A_3 & A_4 & A_3 & -A_4 \\ 0 & 0 & 0 & 0 & \cdots & -A_3 & -A_4 & A_3 & -A_4 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 0 & A_3 & A_4 \end{bmatrix}$ $A = \left| \begin{array}{cc} D_R & H_B \\ H_R & D_B \end{array} \right| D_R = 2 \operatorname{diag}[\frac{1}{2}A_2 A_1 A_2 \cdots A_1 A_2 - \frac{1}{2}A_2]$ $H_B = D_B = 2 \operatorname{diag}[A_1 A_2 \cdots A_1 A_2]$

Red – Black Collocation Linear system


	a_1	a_2	a_3	a_4
A_1	r^+	s^+	q	t^+
A_2	s^+	u^+	t^{-}	ϵ
A_3	q	t^-	r^{-}	s^-
A_4	t^+	ϵ	s^-	u^-

with

$$\begin{split} \epsilon &= -\frac{\lambda}{24 n_s^2} \ , \ q = 24 + 22\epsilon \ , \\ r^{\pm} &= 86\epsilon - 24 \pm (48\epsilon - 18)\sqrt{3} \ , \\ s^{\pm} &= 13\epsilon - 12 \pm (7\epsilon - 8)\sqrt{3} \ , \\ t^{\pm} &= 5\epsilon + 3 \pm (\epsilon + 1)\sqrt{3} \ , \\ u^{\pm} &= 2\epsilon - 3 \pm (\epsilon - 2)\sqrt{3}. \end{split}$$

lierative Solution

$$A = \left[\begin{array}{cc} D_R & H_B \\ H_R & D_B \end{array} \right]$$

$$A = D_A - L_A - U_A$$

with

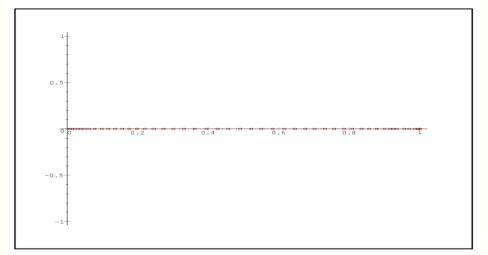
$$D_A = \begin{bmatrix} D_R & O \\ O & D_B \end{bmatrix} , \ L_A = \begin{bmatrix} O & O \\ -H_R & O \end{bmatrix} , \ U_A = \begin{bmatrix} O & -H_B \\ O & O \end{bmatrix}$$

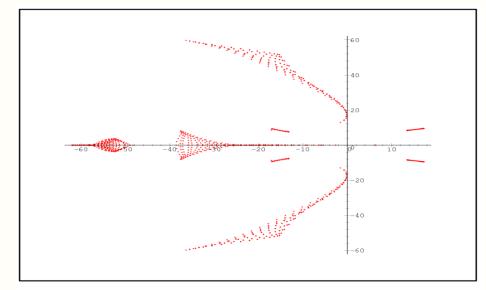
$$oldsymbol{x} = \left[egin{array}{c} oldsymbol{x}_R \ oldsymbol{x}_B \end{array}
ight] ext{ and } oldsymbol{b} = \left[egin{array}{c} oldsymbol{b}_R \ oldsymbol{b}_B \end{array}
ight]$$

lterative Solution

$$M_{1}^{-1} A M_{2}^{-1} M_{2} \boldsymbol{x} = M_{1}^{-1} \boldsymbol{b}$$
where
$$M_{1} = D_{A} - L_{A} = D_{A} (I - D_{A}^{-1} L_{A})$$
and
$$M_{2} = I - D_{A}^{-1} U_{A}$$

$$\begin{bmatrix} I & O \\ O & S \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{R} + D_{R}^{-1} H_{R} \boldsymbol{x}_{B} \\ \boldsymbol{x}_{B} \end{bmatrix} = \begin{bmatrix} \hat{\boldsymbol{b}}_{R} \\ \hat{\boldsymbol{b}}_{B} \end{bmatrix}$$
where
$$S = D_{B} - H_{R} D_{R}^{-1} H_{B}$$


$$\hat{\boldsymbol{b}}_{R} = D_{R}^{-1} \boldsymbol{b}_{R} \text{ and } \hat{\boldsymbol{b}}_{B} = \boldsymbol{b}_{B} - H_{R} \hat{\boldsymbol{b}}_{R}$$



Eigenvalues of Collocation matrix

Schur Complement lierative Solution

S1: Solve
$$D_R \hat{\boldsymbol{b}}_R = \boldsymbol{b}_R$$

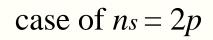
S2: Evaluate
$$\hat{\boldsymbol{b}}_B = \boldsymbol{b}_B - H_R \hat{\boldsymbol{b}}_R$$

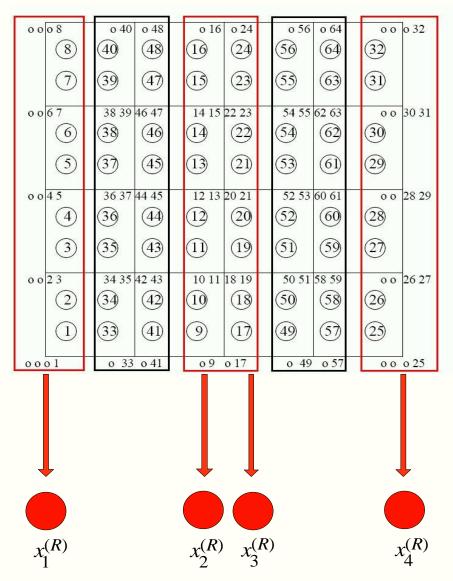
S3: Solve with BiCGSTAB
$$S \boldsymbol{x}_B = \boldsymbol{\hat{b}}_B$$

S4: Evaluate
$$\hat{\boldsymbol{x}}_B = H_B \boldsymbol{x}_B$$

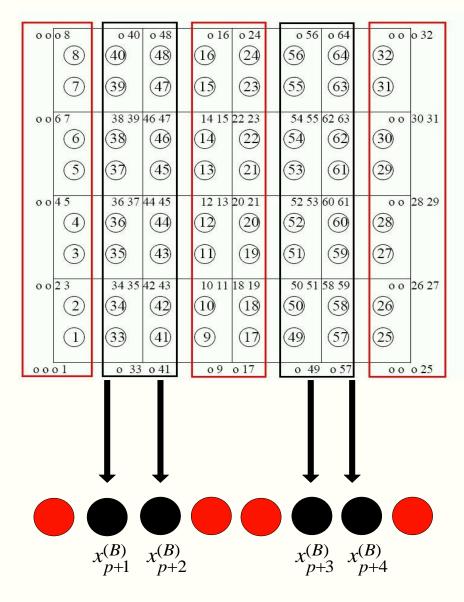
S5: Solve
$$D_R \hat{\boldsymbol{x}}_R = \hat{\boldsymbol{x}}_B$$

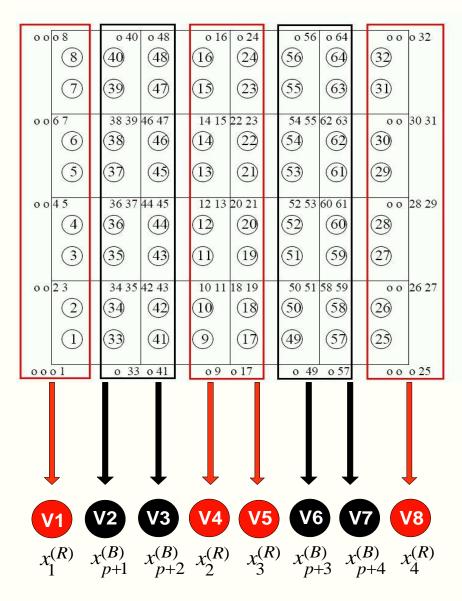
S6: Evaluate
$$\boldsymbol{x}_R = \boldsymbol{\hat{b}}_R - \boldsymbol{\hat{x}}_R$$

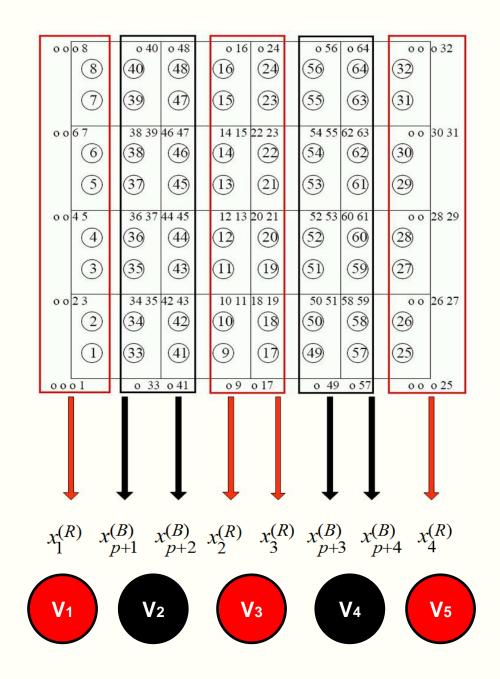



Parallel Iterative Solution of Collocation Linear system on Shared Memory Architectures

- Uniform Load Balancing between core threads
- Minimal Idle Cycles of core threads
- Minimal Communication




case of
$$n_s = 2p$$



case of
$$n_s = 2p$$

Mapping into a fixed size Architecture of N Cores

case of
$$k = 2p/N$$
 even

$$x_{l}^{(R)}$$

$$x_{l}^{(B)}$$

$$k = 2p/N \text{ even}$$

$$2k \text{ virtual threads}$$

$$l = (j-1)k+1, \dots, jk$$

$$l = 2p+(j-1)k+1, \dots, 2p+jk$$

$$p_{j}$$

$$j = 1, \dots, N$$

Parallel Schur Complement Iterative Solution

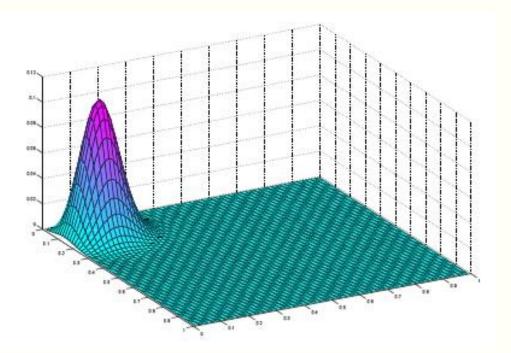
- S1: Solve in parallel on host $D_R \hat{b}_R = b_R$
- S2: <u>Send matrices</u> A₃ and A₄ to GPU
- S3: Evaluate in parallel on GPU $\hat{b}_B = b_B H_R \hat{b}_R$
- S4: Solve in parallel with BiCGSTAB $S x_B = \hat{b}_B$
- S5: Evaluate in parallel on GPU $\hat{x}_B = H_B x_B$
- S6: Solve in parallel on host $D_R \hat{x}_R = \hat{x}_B$
- S7: Evaluate in parallel on host $x_R = \hat{b}_R \hat{x}_R$

Parallel BicgsTAB

Choose initial approximation $x^{(0)}$ of the solution x_B $r^{(0)} = 8 - S x^{(0)}$ Choose \hat{r} (usually $\hat{r} = r^{(0)}$) for i = 1, 2, ... $\rho_{i-1} = \hat{r}^T r^{(i-1)}$ if $\rho_{i-1} = 0$ method fails if i = 1 $p^{(1)} = r^{(0)}$ else $\beta_{i-1} = \frac{\rho_{i-1}}{\rho_{i-2}} \frac{\alpha_{i-1}}{\omega_{i-1}}$ $p^{(i)} = r^{(i-1)} + \beta_{i-1} \left(p^{(i-1)} - \omega_{i-1} v^{(i-1)} \right)$ endif $v^{(i)} = S p^{(i)}$ $\alpha_i = \frac{p_{i-1}}{\hat{r}T_n(i)}$ $s = r^{(i-1)} - \alpha_i v^{(i)}$ if ||s|| is small enough then $x_B^{(i)} = x_B^{(i-1)} + \alpha_i p^{(i)}$ stop t = S s $\omega_i = \frac{s_{T_i}}{s_{T_i}}$ $x_B^{(i)} = x_B^{(i-1)} + \alpha_i p^{(i)} + \omega_i s$ Check for Convergence if $\omega_i = 0$ stop $r^{(i)} = s - \omega_i t$ end

Parallel BicgSTAB

Evaluation of t = Sp


- S1: <u>Send</u> p from host to GPU
- S2: Evaluate in parallel on GPU $t = H_B p$
- S3: <u>Send</u> t from GPU to host
- S4: Solve in parallel on host $D_R s = t$
- S5: <u>Send</u> s from host to GPU
- S6: Evaluate in parallel on GPU $q = H_R s$
- S7: <u>Send</u> q from GPU to host
- S8: Evaluate in parallel on host $t = D_B p q$

The Dirichlet Helmholtz Problem

 $u(x, y) = 10\varphi(x)\varphi(y)$, $(x, y) \in [0,1] \times [0,1]$ with $\varphi(x) = (x^2 - x)e^{-100(x - 0.1)^2}$

HP SL390s - Tesla M2070 GPUs

HP SL390s

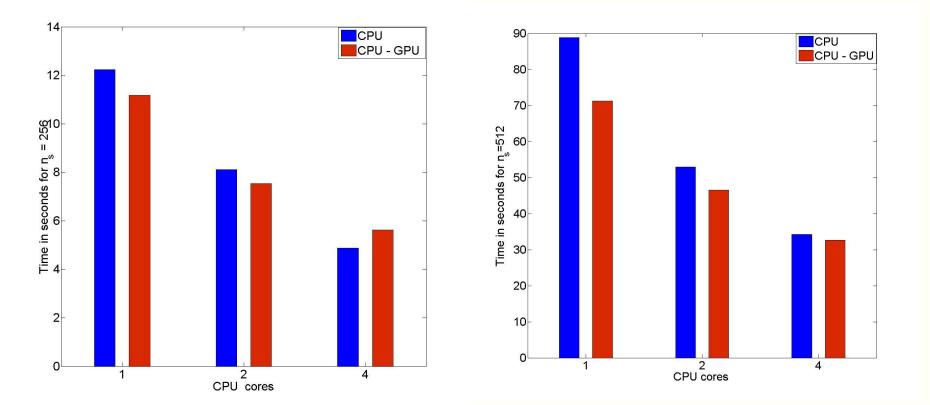
+ 2 x

6 core Xeon@2.8GHz 24GB memory Oracle Linux 6.3 x64 PGI 13.5 Fortran PCI-e gen2 x16

TECHNICAL SPECIFICATIONS

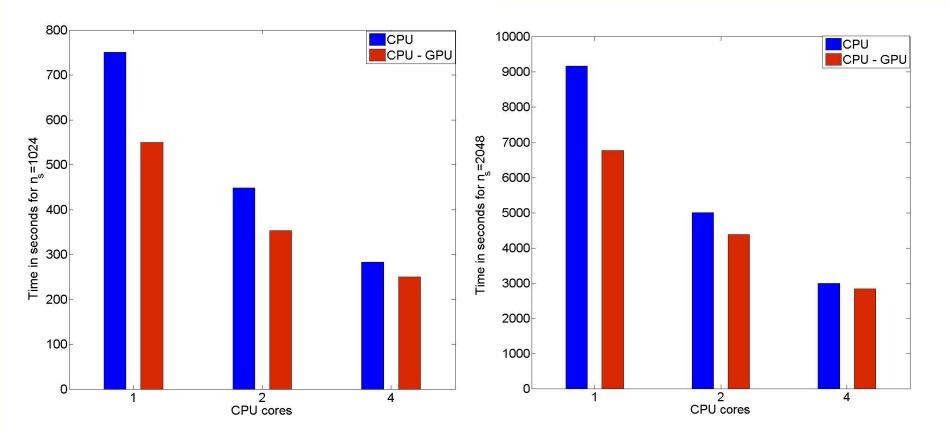
	Tesla M2070 / M2075	
Peak double precision floating point performance	515 Gigaflops	
Peak single precision floating point performance	1030 Gigaflops	
CUDA cores	448	
Memory size (GDDR5)	6 GigaBytes	
Memory bandwidth (ECC off)	150 GBytes/sec	

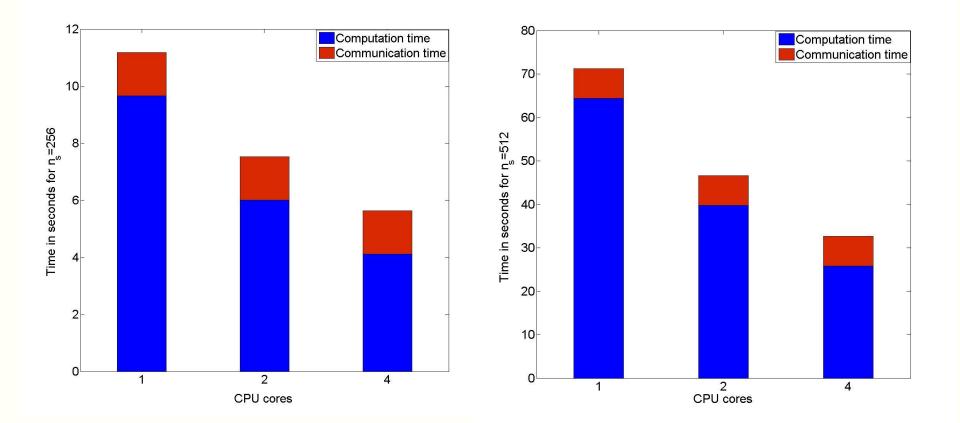
The Portland Group

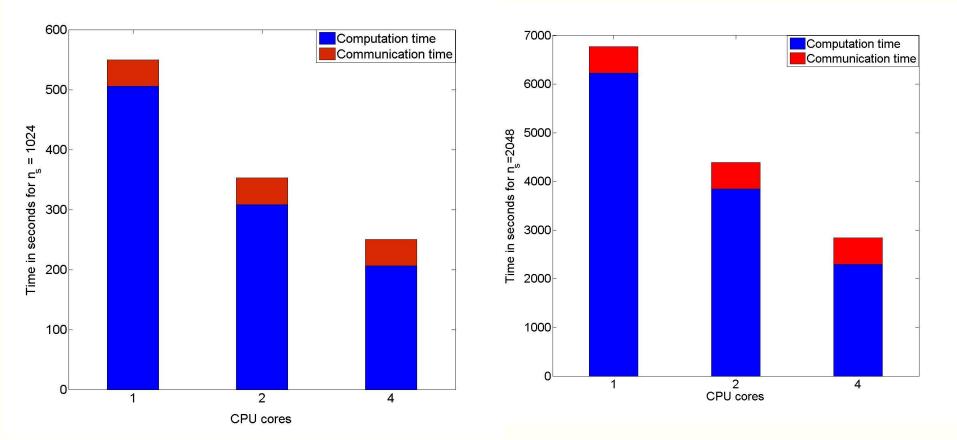


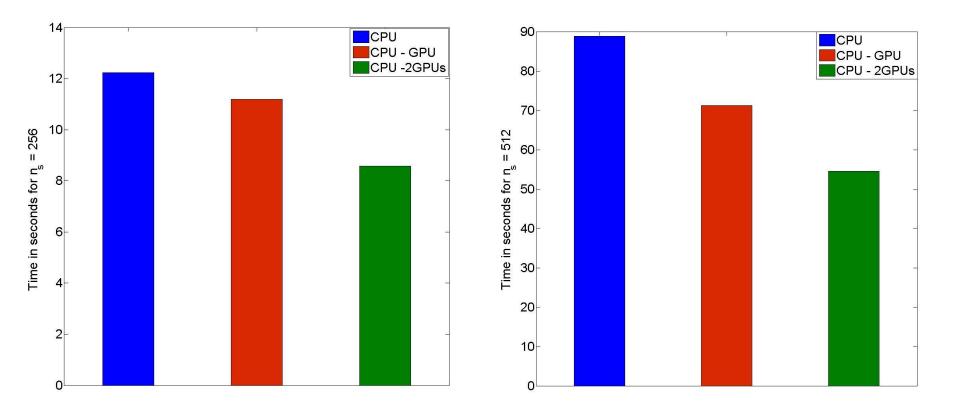
Realization on HP SL390s Tesla GPU machine Iterations / Error measurements

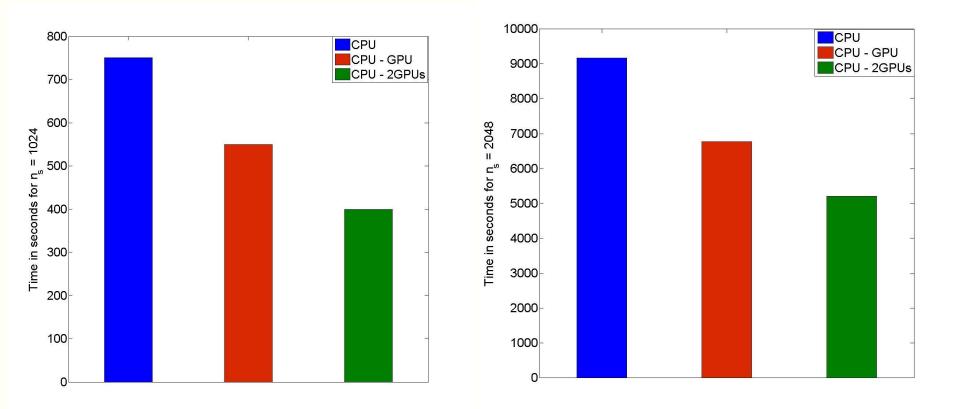
Ns	BiCGSTAB Iterations	 b – A x n 2
256	294	6.06e-11
512	589	2.85e-11
1024	1161	1.39e-11
2048	3726	9.59e-12











Conclusions

- A new parallel algorithm implementing the Schur complement with BiCGSTAB iterative method for Hermite Collocation equations has been developed.
- The algorithm is realized on Shared Memory multi-core machines with GPUs.
- A performance acceleration of up to 30% is observed.

Future work

 Design an efficient parallel Schur complement algorithm of the Hermite Collocation equations for Multiprocessor /Grid machines with GPUs.

