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Part 1. Saltwater intrusion 

Basic description of the problem. 
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   The problem: 
   Rapidly increasing needs for fresh water in coastal areas and 
   islands, due to: 
 Population growth  
 Tourism 
 Agriculture needs 

 

   results to: 
• Intensive pumping in freshwater aquifers, mostly during 

summer months, beyond the tolerable limits of their natural 
replenishment. 
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   Consequences: 
• Decrease in freshwater table level in these areas. 
• Sea water intrusion into the coastal aquifer. 
• Mixing of fresh and salt water creates water quality problems. 
• Wells of the area becoming unusable for water supply and 

irritation. 
• Negative economical impacts in these areas. 
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  There is a great need for developing pumping management 
methodologies, in order to determine: 

 
• the total volume of water that can be pumped from coastal aquifers, 

while protecting the wells from saltwater intrusion. 
 

• the optimal places where wells can be placed, in order to maximize 
the non-risk pumping of fresh water. 
 

• the max number of wells that can be distributed over the aquifer. 
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Part 2. Mathematical approach-model equations 
Presentation of the mathematical model simplifications 
and equations, we use to describe the water flow inside 
the aquifer. 
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Model simplifications 

   Flow in coastal aquifers is a very complex process, because 
• there exist more than one mixing fluid phases, 
• fluid density depends on the unknown concentrations, 
• there exist a great spatial variability of hydraulic parameters 

inside the region of the aquifer. 
 
   So, model simplifications are needed, in order to provide 

reasonable approximate predictions. The most common of them 
are: 

• Sharp Interface approximation, 
• Ghyben-Herzberg equation. 
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   Sharp Interface approximation: 
• There is no direct mixing of sea and fresh water inside the aquifer. 
• There exists an Interface area, the movement and position of which 

we are trying to study. 
 
   Ghyben-Herzberg equation:      
                            ,  where  
 
• We can use this equation only if the Interface area is practically 

stabilized at some position, i.e. when the flow conditions approach 
steady state. 
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Aquifer 2D: Mathematical parameters 
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  Parameters of the aquifer (distances) 
 

• L:  Length of the aquifer. 
 

• B:  Width of the aquifer. 
 

• d:  Height of the aquifer from its bottom to sea level. 
 

• b(x,y):  Freshwater depth from free surface to the Interface. 
 

• ξ(x,y):  Freshwater depth from the sea level to the Interface. 
 

• hf(x,y):  Freshwater piezometric head with reference to the bottom 
of the aquifer. 
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  Parameters of the aquifer (areas and water movement) 
 

• τ:  Points where the interface surface intersects the base of the 
aquifer (Toes area). 
 

• Q (m3/day):  Pumping rates of the aquifer wells. 
 

• Ν (mm/year): Water recharge distributed over the surface of the 
aquifer (e.g. rain, rivers). 
 

• Κ (m/day):  Hydraulic conductivity. 
 

• q (m2/day):  Ambient horizontal discharge per unit width of the 
aquifer. 
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Equations: 

• Zone 1. Steady flow equation: 
 

 
 

  where   hf = b. 
 
• Zone 2. Steady flow equation: 

 
 
 

  where  hf = b+d-ξ. 
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  Following Strack[1976], we define the flow potential φ=φ(x,y) 
as follows: 

 

• Zone 1. 
 
 
• Zone 2. 

 
 

• Toes of interface area. 
       ξ = δ,  hf = (1+δ)d   and                                 
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     The flow potential φ=φ(x,y) is a continuous and smooth function 
across the boundary between zones 1 and 2 and satisfies the 
differential equation: 
 

 
 

     with boundary conditions: 
     coast boundary (x=0):  ξ=0,  φ(0,y)=0 
 
  
     (i.e. at no flow boundaries the flow towards direction n 

perpendicular to the boundary is 0). 
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   If K, N, Q and the boundary conditions are known, the previous 
equation can be solved for φ(x,y) using analytical or numerical 
methods. Once φ(x,y) is determined, the interface surface can be 
calculated as a function of φ, as follows: 

 

• Zone 1. 
   z = 0,                                        ,  for   
 
• Zone 2. 
 
                                                                    
                           ,                              ,  for                                       
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Finally, the locus of the Toes of Interface area can be determined by 
solving for xT, as a function of yT, the following nonlinear equation: 
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Part 3. Types of coastal freshwater aquifers 

Presentation of three types of coastal freshwater aquifers, 
with different sets of boundaries. Analytical solution of 
flow potential φ=φ(x,y) for these aquifers. 
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   Aquifer type A. Semi infinite dimensions. 
   Homogeneous aquifer bounded only on one side by the coastline. 
 
• Analytical solution of flow potential  
   (Strack[1976], Cheng[2000]): 
 
 
 
   where (xj, yj), j=1,..,M   are the coordinates of the wells. 
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   Aquifer type Β. Infinite length. 
   Homogeneous aquifer bounded on the left side by the coastline, 

with up and down impervious boundaries. 
 
• Analytical solution of flow potential: 
 
 
 
 
 
 
 
  where (xj, yj), j=1,..,M  are the coordinates of the wells. 
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  Aquifer type C. Rectangular shape. 
  Homogeneous aquifer bounded on the left side by the coastline with 
  up, down and right impervious boundaries. 
 

• Analytical solution of flow potential: 
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where (xj, yj), j=1,..,M  are the coordinates of the wells. 
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Part 4. Pumping optimization methods in coastal aquifers 
 

Our goal is to achieve the maximum pumping rates of all the wells 
inside the aquifer, without risking the saltwater contamination of 
the wells, known as the Toe Constraint formulation. 
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   AL.O.P.EX. method (ALgorithm Of Pattern EXtraction) 
 

• Introduced by Harth και Tzanakou, Syracuse University, 1974. 
• Stochastic optimization for adaptive correction of atmospheric 

distortion in astronomical observation, M. Zakynthinaki, PhD Thesis, 
Chania, 2001. 

  
• Stochastic optimization algorithm. 
• Control (cost-profit) function  f=f(x1,x2,x3,x4,..,xn). 
• Goal: Maximize or minimize the control function. 
• Local extrema can be avoided by the use of some kind of noise. 
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     A few words about the ALOPEX method 
 

• Iterative algorithm.  
• Every iteration starts with the data of the previous one. 
• In every iteration all the control variables of the cost function can be 

changed simultaneously. 
• The new values of the variables are stochastically depended from 

the change of the cost function between two iterations. 
• The stochastic element of the procedure is the noise, which is 

controlled from the user. 
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Versions of the ALOPEX algorithm 
• ALOPEX I 
        
      where:                                          ,                                                                    .                        
 

• ALOPEX II 
 
      where c:constant. 
 

• ALOPEX IIIa 
      
 

      where:                                               . 
 
      Also: 
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• ALOPEX III 
 
 

     where c(n): interpolation approximation of second degree. 
 

• ALOPEX IVa 
 
 
 

      where                                                             . 
 
•  ALOPEX IV 

 
 

      where c:constant. 
      Also:    
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Part 5. Numerical simulations 

Applications of ALOPEX algorithm in an Type C aquifer 
with 2 and 5 wells, using the MATLAB environment. 
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Aquifer type C: A hypothetical test case 
2 pumping wells  
 Aquifer’s parameters: 
• L=7000 m 
• B=3000 m 
• (xw1,yw1)=(1500,700) m 
• (xw2,yw2)=(2350,2200) m 
• K=100 m/day 
• N=30 mm/year 
• q=1.23 m2 /day 
• d=25 m 
• Qtotal=20000 m3/day 
• Qlocal_min=(200,200) m3/day 
• Qlocal_max=(2500,2500) m3/day 
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Well’s cone of depression: 
• radius of influence=300 m 
• safety distance=100 m. 
 

 



Algorithm parameters: 
• c=0.6: acceleration factor 
• noise(i)(k)=0.05*Q(i)(k)*rand. 
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ALOPEX II algorithm: 

and Profit function: 

at k-th iteration. 
 

Penalties management: 
• Qlocal_min penalty=1.20 
• Qlocal_max penalty=0.95 
• x-movement penalty=0.95 
• critical-distance penalty=0.95. 
 
 

Q(i)(k)=Q(i)(k-1)+c*[Q(i)(k-1)- Q(i)(k-2)]*[Profit(k-1)- Profit(k-2)]+noise(k) 

  



Penalties definitions 

• Qlocal_min penalty∊[1,2] 
   for i=1:n 
     if Q(i)(k) ≤ Qlocal_min(i) 
        Q(i)(k) = Qlocal_min penalty*Q(i)(k)  
     end 
   end,    at k-th iteration 
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• Qlocal_max penalty ∊[0,1] 
   for i=1:n 
     if Q(i)(k) ≥ Qlocal_max(i) 
        Q(i)(k) = Qlocal_max penalty*Q(i)(k)  
     end 
   end,    at k-th iteration 
 

• x-movement penalty ∊[0,1] 
   for i=1:n 
     if xT(i)(k) ≥ safety-point(i) 
       Q(i)(k) = x-movement penalty*Q(i)(k)  
     end 
   end,    at k-th iteration 
 

• critical-distance penalty ∊[0,1] 
   for i=1:n 
     for j=1:n 
       if front-distance(i,j)(k) ≤ critical-distance(i,j) 
          Q(j)(k) =critical-distance penalty*Q(j)(k)  
       end 
     end 
   end,    at k-th iteration. 
 

n: number of wells. 

    



Definition of safety points and cone of depression areas  
for aquifer wells. 
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Numerical results using the MATLAB environment 

Optimal values for pumping rates: 
• Qopt(1)=606.90 m3/day 
• Qopt(2)=2598.45 m3/day 

  ΣQopt(i)=3205.35 m3/day. 
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Profit function and pumping rates during a typical 
optimization run of 300 iterations. 

Penalties activation:  
• Qlocal_min penalty: 0 times  
• Qlocal_max penalty: 69 times 
• x-movement penalty: 139 times 
• critical-distance penalty: 42 times. 

 
 



Aquifer type C: Vathi area of Greek island Kalymnos 
5 pumping wells  

 Aquifer’s parameters: 
• L=7000 m 
• B=3000 m 
• (xw1,yw1)=(3932,975) m 
• (xw2,yw2)=(2657,1572) m 
• (xw3,yw3)=(4873,1586) m 
• (xw4,yw4)=(3353,2200) m 
• (xw5,yw5)=(4632,2470) m 
• K=100 m/day 
• N=30 mm/year 
• q=1.23 m2 /day 
• d=25 m 
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Well’s cone of depression: 
• radius of influence=300 m 
• safety distance=100 m. 
 

• Qtotal=20000 m3/day 
• Qlocal_min(i)=200 m3/day 
• Qlocal_max(i)=1500 m3/day 
 



Algorithm parameters: 
• c=0.6: acceleration factor 
• noise(i)(k)=0.05*Q(i)(k)*rand. 
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ALOPEX II algorithm: 

and Profit function: 

at k-th iteration. 
 

Penalties management: 
• Qlocal_min penalty=1.20 
• Qlocal_max penalty=0.95 
• x-movement penalty=0.95 
• critical-distance penalty=0.95. 
 
 

Q(i)(k)=Q(i)(k-1)+c*[Q(i)(k-1)- Q(i)(k-2)]*[Profit(k-1)- Profit(k-2)]+noise(k) 

  



Numerical results using the MATLAB environment 
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Optimal values for pumping rates: 
• Qopt(1)=875.12 m3/day 
• Qopt(2)=237.81 m3/day 
• Qopt(3)=847.42 m3/day 
 

 
 
 
 

 

 
 

• Qopt(4)=596.65 m3/day 
• Qopt(5)=1402.19 m3/day 

 ΣQopt(i)=3959.19 m3/day. 
 



Profit function and pumping rates during a typical optimization 
run of 300 iterations. 
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 Penalties activation:  
• Qlocal_min penalty: 3 times  
• Qlocal_max penalty: 0 times 
• x-movement penalty: 175 times 
• critical-distance penalty: 128 times. 



Aquifer type C: Vathi area of Greek island Kalymnos 
Sensitivity analysis 
Case a. Optimal values for pumping rates increased by a factor of 2%. 

Modified pumping rates: 
• Qmod(1)=1.02*875.12 =892.62 m3/day 
• Qmod(2)=1.02*237.81 =242.57 m3/day 
• Qmod(3)=1.02*847.42 =864.37 m3/day 
• Qmod(4)=1.02*596.65 =608.58 m3/day 
• Qmod(5)=1.02*1402.19 =1430.23 m3/day 
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ΣQmod(i)=4038.37 m3/day. 
 

Aquifer properties, well 
properties and penalties 
management same as in 
original case. 
 



Aquifer type C: Vathi area of Greek island Kalymnos 
Sensitivity analysis 
Case b. Rain factor N increased by a value of 20%. 
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Optimal values for pumping rates: 
• Qopt(1)= 920.08 m3/day 
• Qopt(2)= 319.56 m3/day 
• Qopt(3)= 1323.68 m3/day 
• Qopt(4)= 624.65 m3/day 
• Qopt(5)= 1046.31 m3/day 

Aquifer properties, well 
properties and penalties 
management same as in 
original case. 
 
Nnew=1.20*30=36 mm/year 

ΣQopt(i)= 4234.28 m3/day 
 
(6.95% increase of the sum of 
pumping rates from original case)  
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Aquifer type C: Vathi area of Greek island Kalymnos 
Sensitivity analysis 
Case c. Ambient water discharge factor q decreased by a value of 20%. 

Aquifer properties, well properties 
and penalties management same as 
in original case. 
 
qnew=0.80*1.23=0.984 m2/day 

Optimal values for pumping rates: 
• Qopt(1)= 863.12 m3/day 
• Qopt(2)= 220.70 m3/day 
• Qopt(3)= 714.73 m3/day 
• Qopt(4)= 586.88 m3/day 
• Qopt(5)= 856.59 m3/day 

ΣQopt(i)= 3242.02 m3/day 
 
(18.1% decrease of the sum of 
pumping rates from original case)  
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Aquifer type C: Vathi area of Greek island Kalymnos 
Sensitivity analysis 
Case d. Turning off the x-movement penalty. 

Aquifer properties and well 
properties same as in original 
case. 
 
 

Penalties management: 
• Qlocal_min penalty=1.20 
• Qlocal_max penalty=0.95 
• x-movement penalty=1.00 
• critical-distance penalty=0.98 
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• Results: Saltwater intrusion 
• Actions: Decrease the critical-distance  

penalty to the area of 0.95 (lack of 
fine-tuning in the convergence 
procedure) 
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Aquifer type C: Vathi area of Greek island Kalymnos 
Sensitivity analysis 
Case e. Turning off the critical-distance penalty. 

Aquifer properties and well 
properties same as in original 
case. 
 
 

Penalties management: 
• Qlocal_min penalty=1.20 
• Qlocal_max penalty=0.95 
• x-movement penalty=0.95 
• critical-distance penalty=1.00 
 
 

• Results: Saltwater intrusion 
• Actions: Decrease the x-movement  

penalty to the area of 0.70 (lack of 
fine-tuning in the convergence 
procedure) 



 Discussion and conclusions 
• The present work implements the ALOPEX optimization method to 

the problem of prevention of salinization in freshwater aquifers.  
 

• The study is based on a well known model of freshwater aquifers 
and its analytical solution for the water flow potential. The 
ALOPEX method is chosen to calculate the optimal pumping rates 
of the aquifer wells, due to the advantages of the method when 
compared to other optimization tools. 

 

•  Simulations are presented for i) a hypothetical case of an aquifer 
with two wells and ii) the real aquifer case of Vathi (on the island 
of Kalymnos, Greece). A study on the sensitivity of the optimization 
process on the case of the aquifer of Vathi has also been performed, 
confirming the efficiency and applicability of the optimization 
method, as well as the need of the penalties imposed.  
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   A few words about the advantages of ALOPEX optimization method. 
 

• by incorporating stochasticity, the method effectively finds the global 
maxima or minima without local convergence yet in a manner that 
does not require inefficient scanning for the solution.  

 

• the profit function of the method is a scalar that measures global 
performance and can thus contain a large number of variables (related 
to the pumping rates of the aquifer wells), which may be 
simultaneously adjusted. 
 

• the same optimization process can be applied in real time and is thus 
able to control the volume of pumping water in a real aquifer 
environment.  
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• The method can be applied together with different pumping policies 
for the aquifer areas, giving us full control of the pumping 
management. 

 

   For example, minimum and maximum pumping rates can differ for 
every well in controlling the volume of water distributed over the area. 
In this way, areas with different water needs (cities or agricultural 
areas) can be provided with no-less than the volume of water they 
actually need. 
 

• No knowledge of the dynamics of the system or of the functional 
dependence of the cost function on the control variables, is required, 
making this way the method applicable to further, more realistic 
simulations where no analytical solutions are provided. 
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