PDEs In FENICS

Emmanuel Mathioudakis

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY
73100 CHANIA - CRETE - GREECE

EMXEIPHEIAKO NMPOTPAMMA
‘ EKIMAIAEYZH KAI AlA BIOY MAGHZH U/ Ez nA
EREVIVEN GTNV UOLYWYid TNE YVWEN 2007'2013

= i (T
YNOYPTEIO MAIAEIAL KAl BPHEKEYMATON EYPanAiko KOINONIKO TAMEID

Evpwraikn ‘Evwon EIAIKH YNHPEZIA AIAXEIPIZHI

Eupwmraiké Kowuwviké Tapeio

Me tn ouyypnuatrodétnon Tng EANadag kat Thg Eupwmaikrg Evwaong

What is FENICS

“The FENICS Project is a collection of free
software with an extensive list of features for
automated, efficient solution of differential
equations.”

http://fenicsproject.org/

TECHNICAL UNIVERSITY OF CRETE o l
APPLIED MATHEMATICS AND COMPUTERS LABORATORY 5

FEniCS is a multi-institutional project

@ Initiated 2003 by Univ. of Chicago and Chalmers Univ. of
Technology (Ridgway Scott and Claes Johnson)

@ Important contributions from

e Univ.of Chicago (Rob Kirby, Andy Terrel, Matt Knepley, R. Scott)
o Chalmers Univ. of Technology (Anders Logg, Johan Hoffman,
Johan Janson)

o Delft Univ. of Technology (Garth Wells, Kristian Oelgaard)

@ Current key institutions:

e Simula Research Laboratory (Anders Logg, Marie Rognes, Martin

Alnzes, Johan Hake, Kent-Andre Mardal,)
o Cambridge University (Garth Wells, ...)

@ About 20 active developers

@ Lots of application developers

&i FENICS
PROJECG
‘ | . “

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

FENICS Features

Automated solution of variational problems
Automated error control and adaptivity
An extensive library of finite elements

High performance linear algebra: PETSc,
Trilinos/Epetra, uBlas, MTL4

Computational Meshes: adaptive refinement,
mesh partitioning (parmetis, scotch)

Visualization and plotting
Extensive documentation: It has its own book!

3 T >
;;:é.é_,. S

TECHNICAL UNIVERSITY OF CRETE 4 ;
APPLIED MATHEMATICS AND COMPUTERS LABORATORY ¥ s

FENICS Components

DOLFIN: Problem solving sopicaiore
o R e ics Aore
I

environment

FFC: FEnICS Form L pveww
compiler

FIAT: FInite element
Automatic Tabulator

UFC: Unified Form-
assembl Code Code
generation interface

UFL: the Unified Form-
assembly Code _ | _
PEISGE UBLAS URFENCEE NPy SCOTCEH WAtE

JIT compiler: instant |)| e)])

Instant FErari

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

FEnICS is easy to install

@ Easiest on Ubuntu (Debian):
sudo apt-get install fenics

@ Mac OS X drag and drop installation (.dmg file)
@ Windows binary installer

@ Automated installation from source (compile & link)

Mac OS X e

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

We will first use FEniCS to solve a stationary diffusion
problem, the Poisson equation on the unit interval

Poisson

—u" =f(x); J(0)=4;, u(l)=0

Source, f(x)

40

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> V = FunctionSpace(mesh, "CG", 1) /]
>>> —Uu =
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0) _
>>> bc = DirichletBC(V, g, right) U(].) = 0
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") a0 , , ,
>>> f.A, f.sigma = 40, 0.1 — exact
5 25 — appr |{
>>> U = TrialFunction(V) ok
>>> v = TestFunction(V)
>>> Z st
>>> a = inner(grad(v),grad(u))*dx o
>>> L = f*y*dx - 4*v*ds
>>> var
>>> problem = VariationalProblem(a, L, bc) ok - " n ‘
>>> U = problem.solve() ! " B e
>>>
>>> plot(u)

.

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import * ,
>>> Domain
>>>Enesh = UnitInterval(5) Solution space
>>>|V = FunctionSpace(mesh, "CG", 1) /1
>>> —u =
>>> def right(x, on_boundary):
: return x > 1-DOLFIN_EPS u’(O)
>>> g = Constant(0)
>>> bc = DirichletBC(V, g, right) U(l) - 0
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") 30 : : :
>>> f A, f.sigma = 40, 0.1 — exact
>>> 25f — appr |
>>> U = TrialFunction(V) ok
>>> v = TestFunction(V)
>>> E1s}
>>> a = inner(grad(v),grad(u))*dx 10
>>> L = f*v*dx - 4*v*ds
=== 05t
>>> problem = VariationalProblem(a, L, bc) 0 - " -+ " N,
>>> u = problem.solve() - : Cox
>>>
>>> plot(u)
i

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> \ = FunctionSpace(mesh, "CG", 1) /]
>>> —Uu = f
>>>|def right(x, on_boundary): Boun.d.ary

return x > 1-DOLFIN_EPS condition U,(O)
>>>|g = Constant(0) _
>>>|bc = DirichletBC(V, g, right) LJ(]') __ ()
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") a0 , , , ,
>>> f. A, f.sigma = 40, 0.1 — exact
>>> 25f — appr |4
>>> U = TrialFunction(V) 2ol
>>> v = TestFunction(V) ~
>>> Z1st
>>> a = inner(grad(v),grad(u))*dx o
>>> L = f*y*dx - 4*v*ds
>>> var
>>> problem = VariationalProblem(a, L, bc) ol n " " - N
>>> U = problem.solve() h '
>>>
>>> plot(u)

.

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> V = FunctionSpace(mesh, "CG", 1) /!
>>> —Uu =
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0) U 1) _ 0
>>> bc = DirichletBC(V, g, right) Source term -
>>>
>>>|f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") a0 , , , ,
>>>|f. A, f.sigma = 40, 0.1 — exact
>>> 25t — appr |
>>> U = TrialFunction(V) ol
>>> v = TestFunction(V)
>>> Z1s)
>>> a = inner(grad(v),grad(u))*dx L0
>>> L = f*v*dx - 4*v*ds
>>> el
>>> problem = VariationalProblem(a, L, bc) oo - " .+ ‘
>>> U = problem.solve() ! " " e
>>>
>>> plot(u)

.

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> | = FunctionSpace(mesh, "CG", 1) /]
>>> —Uu =
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0)
>>> bc = DirichletBC(V, g, right) LJ(]') __ ()
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") - , , , ,
>>> f. A, f.sigma = 40, 0.1 L , — exact
S>> Variational formulation 25 — appr |-
>>>fu = ?rial?unction(V) ool
>>>|v = TestFunction(V)
>>> Z 15t
>>>la = inner(grad(v),grad(u))*dx -
>>> L = f*y*dx - 4*v*ds
=>>> 0.5
>>> |problem = VariationalProblem(a, L, bc) 0y ,
s u=—pmmol-ve()] 0.2 .4 N .6 0.8 Lo
>>>
>>> plot(u)

.

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>5>
>>> mesh = UnitInterval(5)
>>> V = FunctionSpace(mesh, "CG", 1) //
>>> —Uu p— f
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0)
>>> pc = DirichletBC(V, g, right) U(]-) = 0
>35>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") - , , , ,
>>> f.A, f.sigma = 40, 0.1 — exact
559 25 = appr [q
>>> u = TrialFunction(V) '
>>> v = TestFunction(V)
>>> =
>>> a = inner(grad(v),grad(u))*dx .
>>> L = f*y*dx - 4*v*ds
>>> 0ak
>>> problem = VariationalProblem(a, L, bc) o , , , ,
>>>fu = problem.solve() So|Ve and p|0t T 0.2 [EX] . 0.6 0.8 1.0
>>>
>>>|plot(u)

>

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

A FunctionSpace in PyDOLFIN takes a mesh and a finite
element as arguments.

>>> mesh = UnitInterval(5)
>>> \ = FunctionSpace(mesh, "Lagrange", 1)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Any scalar function on the domain can be
approximated using a linear combination of the basis
functions in the FunctionSpace

Discrete Function Evaluation is done by
5 interpolation

u(x) ~ > uigi(x) >>> u = Function(V)
j=0 >>> u.vector().array()

— Ugdo + U1 + Uy + [6., ©O., 0., 0., 0., 0.]

>>> u(0.1)
Us @3 + Us @4 + Us@s 0.0
>>> u.vector()[0] =1
U = |uog,u1,uz,us, uyg, Us] >>> u(0.1)

0.49999999999999967

@ U is called the vector of expansion coefficients

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The solution of our problem is a discrete Function

Solution: u(x)

250 1
200 1
150 1
uc)

1.00 1

0.500

0.00 T T T T %
0.00 0.200 0.400 0.600 0.800 1.00

>>> plot(u)
>>> u.vector().array()
array([©0.94, 1.74, 2.36, 2.17, 1.17, 0. 1])

>

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The PDE can be re-written using the discrete weak
formulation, which eventually will let us describe our
problem as a linear algebraic system: Ax = b

Strong formulation @ Should be true for every point (strong)
Y = f In space

@ By weighting the
. equation with ¢; and
_ y taking the integral
ux) = J.X; Uit () over the whole
1 1 domain, we solve an
—/ u"didx = / foidx, i=0,...,5 approximation of u
° 0) (weak)

Discrete weak formulation

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Before we simplify the weak form, we treat the
dirichlet boundary condition: u(1) =0

@ The dirichlet boundary conditions at x=1, is
treated by letting ¢;(1) = 0 (= ¢s = 0)

@ Then adding a function g(x) to our function
space which equals 0 at x=1

u(x) = 3w () + 9(x)

>>> def right(x, on_boundary):
return x > 1-DOLFIN_EPS

>>> g = Constant(0)

>>> pc = DirichletBC(V, g, right)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

To be able to use piecewise linear basis functions, we
need to partial integrate the left hand side of the
(discrete) weak form as, fol u"pidx =0

Integration by parts

1 1
—/ uvdx = / uv' dx — [uv];
0 0

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

To be able to use piecewise linear basis functions, we
need to partial integrate the left hand side of the
(discrete) weak form as, fol u’¢idx =0

Integration by parts

1 1
—/ u'vdx = / uv’ dx — [uv]g
0 0

1 1
- [wroax = [woidx+d(0)00) - v (L))
0 0

@ This includes the derivatives at the boundaries!

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

To be able to use piecewise linear basis functions, we
need to partial integrate the left hand side of the
(discrete) weak form as, fol u”"gidx =0

Integration by parts

1 1
—/ uvdx = / uv’ dx — [uv]y
0 0

1 1
- [wroax = [usldx+ u(0)0(0) - (1)1
0 0

@ This includes the derivatives at the boundaries!

@ Recall that our boundary conditions implies that
¢i(1) = 0 and u’(0) = 4, which gives us:

1 1
/ u’Qfdx:/ foidx — 4¢i(1), i=0,....5
0 0

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

We are now ready to describe the weak form as a
linear algebraic system: Ax = Db

/

1 1 5
LHS: / u' ¢ldx = f > gy | oidx
0 0 .
Jj=0

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

We are now ready to describe the weak form as a
linear algebraic system: Ax =b

1 1
LHS: / u' pldx = f > uigy | djdx =
0 0 .

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

We are now ready to describe the weak form as a
linear algebraic system: Ax = b

/

1 1 5
LHS: / u'dldx = / Y Uy | dldx =
0 o \ i

Z (/ Q}Q}'dx) Uj = / foidx —4¢(0), i=0,....5
. 0 0

Ax = b, where :

Aj = [, d/dldx, x; = ujand b; = [fodx — 4¢;(0)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

PyDOLFIN provides functionality to assemble the
matrix A and the vector b (using numerical
integration), and to solve the linear system

Recall that after integration by part we had:

1 1
/ u’Q}'dx:/ foidx — 4¢;i(0), i=0,...,5
0 0

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

PyDOLFIN provides functionality to assemble the
matrix A and the vector b (using numerical
integration), and to solve the linear system

Recall that after integration by part we had:

1 1
/ u’cp;dx:/ foidx —4¢;(0), i =0,...,5
0 0

We use v instead of ¢; and we can write our problem as:
find u € V such that

a(u,v)=1L(v), VveV, where

a(u,v):/u’v’dx and L(v):/fvdx—/ 4vds
Q Q Ble)

The variational formulation

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

UFL in FEniCS can be used to describe variational
forms, and PyDOLFIN can be used to solve
VariationalProblems

Mathematical notation: PyDOLFIN notation:

find u € V such that
a(u,v)=1L(~v), YvevVv >>> U

>>>

TrialFunction(V)
TestFunction(V)

==
where: >>> 3
>>> L
>>>
>>> problem = VariationalProblem(a, L, bc)
>>> U = problem.solve()

L(v) = [ofvdx—[,,4vds

inner(grad(v),grad(u))*dx
f¥v*dx - 4*v*ds

a(u,v) = Jou'Vdx

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

>>>
===
>>>
>>>
===
>=>2>

>>>
===
>>>
>>>
===
>>>
>>>
>>>
>>>
===
>>>
>>>
===
===
>>>
===

from dolfin import * -
mesh = UnitInterval(5) | N\
V = FunctionSpace(mesh, "CG", 1) = \\
o AN
def right(x, on_boundary): . \
return x > 1-DOLFIN_EPS \
0.5800 \
g = Constant(0) " \
bc = DirichletBC(V, g, right) “ - o - "
f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))")
f.A, f.sigma = 40, 0.1
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(v),grad(u))*dx
L = f*v*dx - 4*v*ds
problem = VariationalProblem(a, L, bc)

u = problem.solve()

plot(u)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

—V2u =f; %4(:,[0,1]) = g; u([0,1],:) = 0 :

>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from dolfin import *

mesh = UnitSquare(32, 32)
V = FunctionSpace(mesh, "CG", 1)

def boundary(x):
return x[0] < DOLFIN_EPS or x[O0] > 1.0 - DOLFIN_EP¢

u®@ = Constant(0.0)
bc = DirichletBC(V, u@, boundary)

-0.154 -0.0806 -0.00676' 0.0671 0.141
v = TestFunction(V) B
u = TrialFunction(V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")
g = Expression("-sin(5*x[0])")
a = inner(grad(v), grad(u))*dx
L = v¥f*dx + v*g*ds
problem = VariationalProblem(a, L, bc)
u = problem.solve()
plot(u, interactive=True)

y

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Time dependent system, like the diffusion equation,
can be solved using the same framework

PDE
__L'J = DV?u in ©
D34 = J(t) on 9
u=1 on 0f2>
u(0,:)=1
100 : t < Jstop
) =
j() { 0 . t >_/5top

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(Domain declarations)

>>> from dolfin import *
>>=
>>> mesh = Mesh("single-TT.xml.gz")
>>> subdomains = MeshFunction("uint", mesh, 2)
>>> \ = FunctionSpace(mesh, "CG", 1)
>>>
>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; u@ = 1; JO = 100; D = 100
===
>>> class Outflow(SubDomain):
def inside(self, x, on_boundary):
return (on_boundary and -110 < x[0] and X[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1l] < -35 and \
-210 < x[2] and x[2] < -140)

>>> class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>> outflow = Qutflow()

>>> inflow = Inflow()

===

>>> inflow.mark(subdomains, 2)

===

>>> out_values = Constant(1l)

>>> pc = DirichletBC(V, out_values, outflow)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(Domain-declarations)

>>> from dolfin import *
>>>

>>>[Tesh = Mesh("single-TT.xml.gz")]
)

Domain,
Subdomains &
Solution space

>>>1subdomains = MeshFunction("uint", mesh, 2
>>>\V = FunctionSpace(mesh, "CG", 1)
>>>
>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; u0 = 1; JO = 100; D = 100
>>>
>>> class Outflow(SubDomain):
def inside(self, x, on_boundary):
return (on_boundary and -110 < x[0] and x[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1l] < -35 and \
-210 < x[2] and x[2] < -140)

>>> class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>> outflow = Outflow()

>>> inflow = Inflow()

>>>

>>> inflow.mark(subdomains, 2)

>>>

>>> out_values = Constant(1l)

>>> bc = DirichletBC(V, out_values, outflow)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(Domain declarations)

>>> from dolfin import *
>>>
>>> mesh = Mesh("single-TT.xml.gz")
>>> subdomains = MeshFunction("uint", mesh, 2)
>>> \ = FunctionSpace(mesh, "CG", 1) Model parameters
>>>
>>> ltstop = 3.0; J_stop = 2.0; dt = 0.02; u0 = 1; JO = 100; D = 100
>>>
>>> class Qutflow(SubDomain):
def inside(self, x, on_boundary):
return (on_boundary and -110 < x[0] and x[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1] < -35 and \
-210 < x[2] and x[2] < -140)

>>> class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>> outflow = Outflow()

>>> inflow = Inflow()

>>>

>>> inflow.mark(subdomains, 2)

>>>

>>> out_values = Constant(1)

>>> pbc = DirichletBC(V, out_values, outflow)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(Domain declarations)

>>> from dolfin import *
>
>>> mesh = Mesh("single-TT.xml.gz")
>>> subdomains = MeshFunction("uint", mesh, 2)
>>> \ = FunctionSpace(mesh, "CG", 1)
===
>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; uo = 1; JO = 100; D = 100
P
>>>fclass Outflow(SubDomain): -)
def inside(self, x, on_boundary): Define boundaries
return (on_boundary and -110 < x[0] and x[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1l] < -35 and \
-210 < x[2] and x[2] < -140)

;;; class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>>foutflow = Outflow()
>>>1inflow = Inflow()
>>>
>>>linflow.mark(subdomains, 2)
===
>>>Jout_values = Constant(1l)

>>>\bc = DirichletBC(V, out=va1ues, outflow) y

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>> U = TrialFunction(V)

>>> v = TestFunction(V)

>>>

>>> K = assemble(inner(grad(u),grad(v))*dx)
>>> M = assemble(u*v*dx)

>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)
>>>

>>> u_n = Function(V)

>>>

>>> A = K.copy()

>>> b = Vector(A.size(1))

>>> p[:] = 0.0

>>> X = u_n.vector()

>>> x[:] = u0

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>>fu = Trial?unction(\f) Basis functions
>>>|v = TestFunction(V)

>>>

>>> K = assemble(inner(grad(u),grad(v))*dx)

>>> M = assemble(u*v*dx)

>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)
>>>

>>> u_n = Function(V)

>>>

>>> A = K.copy()

>>> b = Vector(A.size(l))

>>> p[:] = 0.0

>>> X u_n.vector()

>>> x[:] = ul@

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>> u = TrialFunction(V)
>>> v = TestFunction(V)
. Assemble tensors
>>>fK = assemble(inner(grad(u),grad(v))*dx)
>>>IM = assemble(u*v*dx)
)

>>>lsource = assemble(v*ds(2), exterior_facet_domains=subdomains
>>>

>>> u_n = Function(V)

>>>

>>> A = K.copy()

>>> b = Vector(A.size(1l))

>>> p[:] = 0.0

>>> X = u_n.vector()

>>> x[:] = uo

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>> U = TrialFunction(V)

>>> v = TestFunction(V)

>>>

>>> K = assemble(inner(grad(u),grad(v))*dx)
>>> M = assemble(u*v*dx)

>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)
>>>

P e Veras L a ;
>>>fu_n = Function(V) Initialise linear algebr;
>>>
>>>A = K.copy()
>>>lb = Vector(A.size(l))

>>>b[:] = 0.0
>>>Ix = u_n.vector()
>>>\x[:] = u0 S

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

The diffusion equation on weak form, using backward
Euler for the time discretization

Strong form

0 =DV?uin Q: Dg—z = J(t) on 0% u=1on 0%,
Weak form
/ uvdx = / DV?2uv dx
Q Q
. ou
/ uvax = —D/ VuVvdx +/ D—vds
Q Q a0, 9n
u" — un—l
/ vdx = —D/ Vu"Vvdx + Jvds
o At Q o0
/ u'v + AtDVU"Vvdx = / u"vdx + At v ds
Q Q 04

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Instead of using the variational form, it is convenient
to express the weak form on matrix form

Matrix form
(M+AtDK)U" = MU' + AtJ(t)source
where U" is the vector of expansion coefficients and

ij — fQ @f@jdx
Ki= | VoiVeidx; 3 forall ¢; and ¢;in V
source; = |, oq, 9ids

Assemble of tensors in PyDOLFIN

>>> K = assemble(inner(grad(u),grad(v))*dx)
>>> M = assemble(u*v*dx)
>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Each time step we need to solve a linear system

Weak form on Matrix form
(M+ AtDK)U" = MU' + AtJ(t) source }

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

Each time step we need to solve a linear system

Weak form on Matrix form
(M+AtDK)U" = MU' + AtJ(t) source

Time stepping in PyDOLFIN

>>> t = 0.0

>>> plot(u_n, vmin=1l, vmax=5, rescale=False)
>>> while t < tstop:

- t += float(dt)

A.assign(K)
A *= D*dt
A+=M

b[:] = 0.0

if t <= J_stop:
b[:] = source
b *= dt*J0

b+= M*x

bc.apply(A, b)

solve(A, x, b)
plot(u_n)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; w0 = 1; JO = 100; D = 100

6.00
5.00
4.00
3.00
2.00

1.00

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY

