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What is FENICS

“The FENICS Project is a collection of free
software with an extensive list of features for
automated, efficient solution of differential
equations.”

http://fenicsproject.org/

TECHNICAL UNIVERSITY OF CRETE o l
APPLIED MATHEMATICS AND COMPUTERS LABORATORY 5




FEniCS is a multi-institutional project

@ Initiated 2003 by Univ. of Chicago and Chalmers Univ. of
Technology (Ridgway Scott and Claes Johnson)

@ Important contributions from

e Univ.of Chicago (Rob Kirby, Andy Terrel, Matt Knepley, R. Scott)
o Chalmers Univ. of Technology (Anders Logg, Johan Hoffman,
Johan Janson)

o Delft Univ. of Technology (Garth Wells, Kristian Oelgaard)

@ Current key institutions:

e Simula Research Laboratory (Anders Logg, Marie Rognes, Martin

Alnzes, Johan Hake, Kent-Andre Mardal, )
o Cambridge University (Garth Wells, ...)

@ About 20 active developers

@ Lots of application developers

&i FENICS
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FENICS Features

Automated solution of variational problems
Automated error control and adaptivity
An extensive library of finite elements

High performance linear algebra: PETSc,
Trilinos/Epetra, uBlas, MTL4

Computational Meshes: adaptive refinement,
mesh partitioning (parmetis, scotch)

Visualization and plotting
Extensive documentation: It has its own book!
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FENICS Components

DOLFIN: Problem solving sopicaiore
o R e ics Aore
I

environment

FFC: FEnICS Form L pveww
compiler

FIAT: FInite element
Automatic Tabulator

UFC: Unified Form-
assembl Code Code
generation interface

UFL: the Unified Form-
assembly Code _ | _
PEISGE UBLAS URFENCEE NPy SCOTCEH WAtE

JIT compiler: instant | )| e )] )

Instant FErari
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FEnICS is easy to install

@ Easiest on Ubuntu (Debian):
sudo apt-get install fenics

@ Mac OS X drag and drop installation (.dmg file)
@ Windows binary installer

@ Automated installation from source (compile & link)

Mac OS X e
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We will first use FEniCS to solve a stationary diffusion
problem, the Poisson equation on the unit interval

Poisson

—u" =f(x); J(0)=4;, u(l)=0

Source, f(x)

40
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The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> V = FunctionSpace(mesh, "CG", 1) /]
>>> —Uu =
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0) _
>>> bc = DirichletBC(V, g, right) U(].) = 0
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") a0 , , ,
>>> f.A, f.sigma = 40, 0.1 — exact
5 25 — appr |{
>>> U = TrialFunction(V) ok
>>> v = TestFunction(V)
>>> Z st
>>> a = inner(grad(v),grad(u))*dx o
>>> L = f*y*dx - 4*v*ds
>>> var
>>> problem = VariationalProblem(a, L, bc) ok - " n ‘
>>> U = problem.solve() ! " B e
>>>
>>> plot(u)

.

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY




The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import * ,
>>> Domain
>>>Enesh = UnitInterval(5) Solution space
>>>|V = FunctionSpace(mesh, "CG", 1) /1
>>> —u =
>>> def right(x, on_boundary):
: return x > 1-DOLFIN_EPS u’(O)
>>> g = Constant(0)
>>> bc = DirichletBC(V, g, right) U(l) - 0
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") 30 : : :
>>> f A, f.sigma = 40, 0.1 — exact
>>> 25f — appr |
>>> U = TrialFunction(V) ok
>>> v = TestFunction(V)
>>> E1s}
>>> a = inner(grad(v),grad(u))*dx 10
>>> L = f*v*dx - 4*v*ds
=== 05t
>>> problem = VariationalProblem(a, L, bc) 0 - " -+ " N,
>>> u = problem.solve() - : Cox
>>>
>>> plot(u)
i
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The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> \ = FunctionSpace(mesh, "CG", 1) /]
>>> —Uu = f
>>>|def right(x, on_boundary): Boun.d.ary

return x > 1-DOLFIN_EPS condition U,(O)
>>>|g = Constant(0) _
>>>|bc = DirichletBC(V, g, right) LJ(]') __ ()
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") a0 , , , ,
>>> f. A, f.sigma = 40, 0.1 — exact
>>> 25f — appr |4
>>> U = TrialFunction(V) 2ol
>>> v = TestFunction(V) ~
>>> Z1st
>>> a = inner(grad(v),grad(u))*dx o
>>> L = f*y*dx - 4*v*ds
>>> var
>>> problem = VariationalProblem(a, L, bc) ol n " " - N
>>> U = problem.solve() h '
>>>
>>> plot(u)

.
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The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> V = FunctionSpace(mesh, "CG", 1) /!
>>> —Uu =
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0) U 1) _ 0
>>> bc = DirichletBC(V, g, right) Source term -
>>>
>>>|f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") a0 , , , ,
>>>|f. A, f.sigma = 40, 0.1 — exact
>>> 25t — appr |
>>> U = TrialFunction(V) ol
>>> v = TestFunction(V)
>>> Z1s)
>>> a = inner(grad(v),grad(u))*dx L0
>>> L = f*v*dx - 4*v*ds
>>> el
>>> problem = VariationalProblem(a, L, bc) oo - " .+ ‘
>>> U = problem.solve() ! " " e
>>>
>>> plot(u)

.
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The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>>>
>>> mesh = UnitInterval(5)
>>> | = FunctionSpace(mesh, "CG", 1) /]
>>> —Uu =
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0)
>>> bc = DirichletBC(V, g, right) LJ(]') __ ()
>>>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") - , , , ,
>>> f. A, f.sigma = 40, 0.1 L , — exact
S>> Variational formulation 25 — appr |-
>>>fu = ?rial?unction(V) ool
>>>|v = TestFunction(V)
>>> Z 15t
>>>la = inner(grad(v),grad(u))*dx -
>>> L = f*y*dx - 4*v*ds
=>>> 0.5
>>> |problem = VariationalProblem(a, L, bc) 0y ,
s u=—pmmol-ve( ) ] 0.2 .4 N .6 0.8 Lo
>>>
>>> plot(u)

.
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The problem can be stated, solved and plotted, using
a PyDOLFIN script written in 16 lines

>>> from dolfin import *
>5>
>>> mesh = UnitInterval(5)
>>> V = FunctionSpace(mesh, "CG", 1) //
>>> —Uu p— f
>>> def right(x, on_boundary):

return x > 1-DOLFIN_EPS u’(o)
>>> g = Constant(0)
>>> pc = DirichletBC(V, g, right) U(]-) = 0
>35>
>>> f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))") - , , , ,
>>> f.A, f.sigma = 40, 0.1 — exact
559 25 = appr [q
>>> u = TrialFunction(V) '
>>> v = TestFunction(V)
>>> =
>>> a = inner(grad(v),grad(u))*dx .
>>> L = f*y*dx - 4*v*ds
>>> 0ak
>>> problem = VariationalProblem(a, L, bc) o , , , ,
>>>fu = problem.solve() So|Ve and p|0t T 0.2 [EX] . 0.6 0.8 1.0
>>>
>>>|plot(u)

>
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A FunctionSpace in PyDOLFIN takes a mesh and a finite
element as arguments.

>>> mesh = UnitInterval(5)
>>> \ = FunctionSpace(mesh, "Lagrange", 1)
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Any scalar function on the domain can be
approximated using a linear combination of the basis
functions in the FunctionSpace

Discrete Function Evaluation is done by
5 interpolation

u(x) ~ > uigi(x) >>> u = Function(V)
j=0 >>> u.vector().array()

—  Ugdo + U1 + Uy + [ 6., ©O., 0., 0., 0., 0.]

>>> u(0.1)
Us @3 + Us @4 + Us@s 0.0
>>> u.vector()[0] =1
U = |uog,u1,uz,us, uyg, Us] >>> u(0.1)

0.49999999999999967

@ U is called the vector of expansion coefficients
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The solution of our problem is a discrete Function

Solution: u(x)

250 1
200 1
150 1
uc)

1.00 1

0.500

0.00 T T T T %
0.00 0.200 0.400 0.600 0.800 1.00

>>> plot(u)
>>> u.vector().array()
array([ ©0.94, 1.74, 2.36, 2.17, 1.17, 0. 1])

>
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The PDE can be re-written using the discrete weak
formulation, which eventually will let us describe our
problem as a linear algebraic system: Ax = b

Strong formulation @ Should be true for every point (strong)
Y = f In space

@ By weighting the
. equation with ¢; and
_ y taking the integral
ux) = J.X; Uit () over the whole
1 1 domain, we solve an
—/ u"didx = / foidx, i=0,...,5 approximation of u
° 0 ) (weak)

Discrete weak formulation
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Before we simplify the weak form, we treat the
dirichlet boundary condition: u(1) =0

@ The dirichlet boundary conditions at x=1, is
treated by letting ¢;(1) = 0 (= ¢s = 0)

@ Then adding a function g(x) to our function
space which equals 0 at x=1

u(x) = 3w () + 9(x)

>>> def right(x, on_boundary):
return x > 1-DOLFIN_EPS

>>> g = Constant(0)

>>> pc = DirichletBC(V, g, right)
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To be able to use piecewise linear basis functions, we
need to partial integrate the left hand side of the
(discrete) weak form as, fol u"pidx =0

Integration by parts

1 1
—/ uvdx = / uv' dx — [uv];
0 0
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To be able to use piecewise linear basis functions, we
need to partial integrate the left hand side of the
(discrete) weak form as, fol u’¢idx =0

Integration by parts

1 1
—/ u'vdx = / uv’ dx — [uv]g
0 0

1 1
- [ wroax = [ woidx+d(0)00) - v (L))
0 0

@ This includes the derivatives at the boundaries!
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To be able to use piecewise linear basis functions, we
need to partial integrate the left hand side of the
(discrete) weak form as, fol u”"gidx =0

Integration by parts

1 1
—/ uvdx = / uv’ dx — [uv]y
0 0

1 1
- [ wroax = [ usldx+ u(0)0(0) - (1)1
0 0

@ This includes the derivatives at the boundaries!

@ Recall that our boundary conditions implies that
¢i(1) = 0 and u’(0) = 4, which gives us:

1 1
/ u’Qfdx:/ foidx — 4¢i(1), i=0,....5
0 0
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We are now ready to describe the weak form as a
linear algebraic system: Ax = Db

/

1 1 5
LHS: / u' ¢ldx = f > gy | oidx
0 0 .
Jj=0
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We are now ready to describe the weak form as a
linear algebraic system: Ax =b

1 1
LHS: / u' pldx = f > uigy | djdx =
0 0 .
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We are now ready to describe the weak form as a
linear algebraic system: Ax = b

/

1 1 5
LHS: / u'dldx = / Y Uy | dldx =
0 o \ i

Z (/ Q}Q}'dx) Uj = / foidx —4¢(0), i=0,....5
. 0 0

Ax = b, where :

Aj = [, d/dldx, x; = ujand b; = [ fodx — 4¢;(0)

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY




PyDOLFIN provides functionality to assemble the
matrix A and the vector b (using numerical
integration), and to solve the linear system

Recall that after integration by part we had:

1 1
/ u’Q}'dx:/ foidx — 4¢;i(0), i=0,...,5
0 0
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PyDOLFIN provides functionality to assemble the
matrix A and the vector b (using numerical
integration), and to solve the linear system

Recall that after integration by part we had:

1 1
/ u’cp;dx:/ foidx —4¢;(0), i =0,...,5
0 0

We use v instead of ¢; and we can write our problem as:
find u € V such that

a(u,v)=1L(v), VveV, where

a(u,v):/u’v’dx and L(v):/fvdx—/ 4vds
Q Q Ble)

The variational formulation
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UFL in FEniCS can be used to describe variational
forms, and PyDOLFIN can be used to solve
VariationalProblems

Mathematical notation: PyDOLFIN notation:

find u € V such that
a(u,v)=1L(~v), YvevVv >>> U

>>>

TrialFunction(V)
TestFunction(V)

==
where: >>> 3
>>> L
>>>
>>> problem = VariationalProblem(a, L, bc)
>>> U = problem.solve()

L(v) = [ofvdx—[,,4vds

inner(grad(v),grad(u))*dx
f¥v*dx - 4*v*ds

a(u,v) = Jou'Vdx
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>>>
===
>>>
>>>
===
>=>2>

>>>
===
>>>
>>>
===
>>>
>>>
>>>
>>>
===
>>>
>>>
===
===
>>>
===

from dolfin import * -
mesh = UnitInterval(5) | N\
V = FunctionSpace(mesh, "CG", 1) = \\
o AN
def right(x, on_boundary): . \
return x > 1-DOLFIN_EPS \
0.5800 \
g = Constant(0) " \
bc = DirichletBC(V, g, right) “ - o - "
f = Expression("A*exp(-pow(x[0]-0.5,2)/(2*pow(sigma,2)))")
f.A, f.sigma = 40, 0.1
u = TrialFunction(V)
v = TestFunction(V)
a = inner(grad(v),grad(u))*dx
L = f*v*dx - 4*v*ds
problem = VariationalProblem(a, L, bc)

u = problem.solve()

plot(u)
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—V2u =f; %4(:,[0,1]) = g; u([0,1],:) = 0 :

>>>
>>>
>>>
>>>
>>>
>>>

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

from dolfin import *

mesh = UnitSquare(32, 32)
V = FunctionSpace(mesh, "CG", 1)

def boundary(x):
return x[0] < DOLFIN_EPS or x[O0] > 1.0 - DOLFIN_EP¢

u®@ = Constant(0.0)
bc = DirichletBC(V, u@, boundary)

-0.154 -0.0806 -0.00676' 0.0671 0.141
v = TestFunction(V) B
u = TrialFunction(V)
f = Expression("10*exp(-(pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2)) / 0.02)")
g = Expression("-sin(5*x[0])")
a = inner(grad(v), grad(u))*dx
L = v¥f*dx + v*g*ds
problem = VariationalProblem(a, L, bc)
u = problem.solve()
plot(u, interactive=True)

y
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Time dependent system, like the diffusion equation,
can be solved using the same framework

PDE
__L'J = DV?u in ©
D34 = J(t) on 9
u=1 on 0f2>
u(0,:)=1
100 : t < Jstop
) =
j( ) { 0 . t >_/5top
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Diffusion equation solved using PyDOLFIN
(Domain declarations)

>>> from dolfin import *
>>=
>>> mesh = Mesh("single-TT.xml.gz")
>>> subdomains = MeshFunction("uint", mesh, 2)
>>> \ = FunctionSpace(mesh, "CG", 1)
>>>
>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; u@ = 1; JO = 100; D = 100
===
>>> class Outflow(SubDomain):
def inside(self, x, on_boundary):
return (on_boundary and -110 < x[0] and X[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1l] < -35 and \
-210 < x[2] and x[2] < -140)

>>> class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>> outflow = Qutflow()

>>> inflow = Inflow()

===

>>> inflow.mark(subdomains, 2)

===

>>> out_values = Constant(1l)

>>> pc = DirichletBC(V, out_values, outflow)
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Diffusion equation solved using PyDOLFIN
(Domain-declarations)

>>> from dolfin import *
>>>

>>>[Tesh = Mesh("single-TT.xml.gz") ]
)

Domain,
Subdomains &
Solution space

>>>1subdomains = MeshFunction("uint", mesh, 2
>>>\V = FunctionSpace(mesh, "CG", 1)
>>>
>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; u0 = 1; JO = 100; D = 100
>>>
>>> class Outflow(SubDomain):
def inside(self, x, on_boundary):
return (on_boundary and -110 < x[0] and x[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1l] < -35 and \
-210 < x[2] and x[2] < -140)

>>> class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>> outflow = Outflow()

>>> inflow = Inflow()

>>>

>>> inflow.mark(subdomains, 2)

>>>

>>> out_values = Constant(1l)

>>> bc = DirichletBC(V, out_values, outflow)
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Diffusion equation solved using PyDOLFIN
(Domain declarations)

>>> from dolfin import *
>>>
>>> mesh = Mesh("single-TT.xml.gz")
>>> subdomains = MeshFunction("uint", mesh, 2)
>>> \ = FunctionSpace(mesh, "CG", 1) Model parameters
>>>
>>> ltstop = 3.0; J_stop = 2.0; dt = 0.02; u0 = 1; JO = 100; D = 100
>>>
>>> class Qutflow(SubDomain):
def inside(self, x, on_boundary):
return (on_boundary and -110 < x[0] and x[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1] < -35 and \
-210 < x[2] and x[2] < -140)

>>> class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>> outflow = Outflow()

>>> inflow = Inflow()

>>>

>>> inflow.mark(subdomains, 2)

>>>

>>> out_values = Constant(1)

>>> pbc = DirichletBC(V, out_values, outflow)
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Diffusion equation solved using PyDOLFIN
(Domain declarations)

>>> from dolfin import *
>
>>> mesh = Mesh("single-TT.xml.gz")
>>> subdomains = MeshFunction("uint", mesh, 2)
>>> \ = FunctionSpace(mesh, "CG", 1)
===
>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; uo = 1; JO = 100; D = 100
P
>>>fclass Outflow(SubDomain): - )
def inside(self, x, on_boundary): Define boundaries
return (on_boundary and -110 < x[0] and x[0] < -50 and \
70 < x[1] and x[1] < 130 and \
22 < x[2] and x[2] < 82) or (5 < x[0] and x[0] < 75 and \
-105 < x[1] and x[1l] < -35 and \
-210 < x[2] and x[2] < -140)

;;; class Inflow(SubDomain):
def inside(self, x, on_boundary):
return on_boundary and ((x[0]-65)**2+(x[1]+30)**2+x[2]**2 < 16**2)

>>>foutflow = Outflow()
>>>1inflow = Inflow()
>>>
>>>linflow.mark(subdomains, 2)
===
>>>Jout_values = Constant(1l)

>>>\bc = DirichletBC(V, out=va1ues, outflow) y
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Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>> U = TrialFunction(V)

>>> v = TestFunction(V)

>>>

>>> K = assemble(inner(grad(u),grad(v))*dx)
>>> M = assemble(u*v*dx)

>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)
>>>

>>> u_n = Function(V)

>>>

>>> A = K.copy()

>>> b = Vector(A.size(1))

>>> p[:] = 0.0

>>> X = u_n.vector()

>>> x[:] = u0
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Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>>fu = Trial?unction(\f) Basis functions
>>>|v = TestFunction(V)

>>>

>>> K = assemble(inner(grad(u),grad(v))*dx)

>>> M = assemble(u*v*dx)

>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)
>>>

>>> u_n = Function(V)

>>>

>>> A = K.copy()

>>> b = Vector(A.size(l))

>>> p[:] = 0.0

>>> X u_n.vector()

>>> x[:] = ul@
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Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>> u = TrialFunction(V)
>>> v = TestFunction(V)
. Assemble tensors
>>>fK = assemble(inner(grad(u),grad(v))*dx)
>>>IM = assemble(u*v*dx)
)

>>>lsource = assemble(v*ds(2), exterior_facet_domains=subdomains
>>>

>>> u_n = Function(V)

>>>

>>> A = K.copy()

>>> b = Vector(A.size(1l))

>>> p[:] = 0.0

>>> X = u_n.vector()

>>> x[:] = uo
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Diffusion equation solved using PyDOLFIN
(linear algebra initialization)

>>> U = TrialFunction(V)

>>> v = TestFunction(V)

>>>

>>> K = assemble(inner(grad(u),grad(v))*dx)
>>> M = assemble(u*v*dx)

>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)
>>>

P e Veras L a ;
>>>fu_n = Function(V) Initialise linear algebr;
>>>
>>>A = K.copy()
>>>lb = Vector(A.size(l))

>>>b[:] = 0.0
>>>Ix = u_n.vector()
>>>\x[:] = u0 S
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The diffusion equation on weak form, using backward
Euler for the time discretization

Strong form

0 =DV?uin Q: Dg—z = J(t) on 0% u=1on 0%,
Weak form
/ uvdx = / DV?2uv dx
Q Q
. ou
/ uvax = —D/ VuVvdx +/ D—vds
Q Q a0, 9n
u" — un—l
/ vdx = —D/ Vu"Vvdx + Jvds
o At Q o0
/ u'v + AtDVU"Vvdx = / u"vdx + At v ds
Q Q 04
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Instead of using the variational form, it is convenient
to express the weak form on matrix form

Matrix form
(M+AtDK)U" = MU' + AtJ(t)source
where U" is the vector of expansion coefficients and

ij — fQ @f@jdx
Ki= | VoiVeidx; 3 forall ¢; and ¢;in V
source; = |, oq, 9ids

Assemble of tensors in PyDOLFIN

>>> K = assemble(inner(grad(u),grad(v))*dx)
>>> M = assemble(u*v*dx)
>>> source = assemble(v*ds(2), exterior_facet_domains=subdomains)
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Each time step we need to solve a linear system

Weak form on Matrix form
(M+ AtDK)U" = MU' + AtJ(t) source }
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Each time step we need to solve a linear system

Weak form on Matrix form
(M+AtDK)U" = MU' + AtJ(t) source

Time stepping in PyDOLFIN

>>> t = 0.0

>>> plot(u_n, vmin=1l, vmax=5, rescale=False)
>>> while t < tstop:

- t += float(dt)

A.assign(K)
A *= D*dt
A+=M

b[:] = 0.0

if t <= J_stop:
b[:] = source
b *= dt*J0

b+= M*x

bc.apply(A, b)

solve(A, x, b)
plot(u_n)
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>>> tstop = 3.0; J_stop = 2.0; dt = 0.02; w0 = 1; JO = 100; D = 100

6.00
5.00
4.00
3.00
2.00

1.00

TECHNICAL UNIVERSITY OF CRETE
APPLIED MATHEMATICS AND COMPUTERS LABORATORY




