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Abstract—Over the past few years several mathematical models
have been developed to simulate and study the growth of treated
or untreated aggressive forms of brain tumors. Encouraged by our
recent results on the development of fourth order Discontinuous
Hermite Collocation (DHC) numerical schemes to approximate the
classical solution of parabolic evolution problems, in the present
work we consider employing the DHC method for the solution of
a quasi-linear tumor growth model which, apart from proliferation
and diffusion, incorporates as well the effects from radiotherapy
and chemotherapy. The model is also being characterized by a
discontinuous diffusion coefficient to incorporate the heterogeneity of
the brain tissue. To study the spatiotemporal dynamics of the model
problem, the DHC spatial discretization is coupled with Implicit-
Explicit (IMEX) Runge-Kutta (RK) third order schemes for the time
discretization. The effectiveness of the resulting DHC-RK method is
being demonstrated through several numerical experiments.

Keywords—High-grade Gliomas, Radiotherapy, Chemotherapy,
Reaction-Diffusion PDEs, Discontinuous Hermite Collocation,
Implicit-Explicit Runge-Kutta.

I. INTRODUCTION

H IGH-GRADE GLIOMAS are among the most common
and aggressive forms of primary brain tumors. The most

typical problem in diagnosis and treatment of patients with
high-grade glioma, even after an extensive surgical procedure,
is the rapid infiltration of tumor cells in adjacent normal tissue.
Postoperative therapeutic treatment, such as radiotherapy and
chemotherapy, is considered absolutely necessary to reduce
tumor expansion.

As gliomas are known to consist of motile cells able to
proliferate as well as migrate, well known and successful
mathematical models, such as [11], [27], [28] and [9] (for a
review see [13]), have been using reaction-diffusion evolution
equations to describe the core spatiotemporal model’s dynam-
ics. The incorporation of brain’s tissue heterogeneity (white-
grey matter) was achieved in [19], [25] and [26] by introducing
an appropriately discontinuous diffusion coefficient.

Recently, in [20], the effects of low-dose-rate radiotherapy,
as a generalized linear quadratic model, and chemotherapy,
as a simple log-kill model, were incorporated into a logistic
growth reaction-diffusion model and several different sched-
ules of sequential or combined therapy were studied in detail.
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A very interesting approach, as it pertains to radiotherapy
modeling, was also presented in [10] (see also [21]) where a
patient-specific, biologically optimized radiotherapy plan was
presented.

Collocation (cf. [22], [8]) is an easily implemented spatial
discretization method for BVPs that requires no numerical
integration as it does not rely on a variational formulation.
Combined with third degree finite element basis function, such
as Hermite cubic or Spline elements, produces fourth order
approximations to sufficiently smooth solutions.

Since the introduction of a class of discontinuous Hermite
elements and their combined usage with the Collocation
method (cf. [15], [16]), for the treatment of linear reaction-
diffusion problems with discontinuous diffusion coefficients,
the method has been also coupled (cf. [3], [4]) with high order
Runge-Kutta to increase performance and stability.

Following our recent results in [3] and [4], the main
objective in this work is to study the performance of the
DHC method, combined with Implicit-Explicit Runge-Kutta
schemes, as it pertains to the solution of the logistic quasi-
linear heterogeneous brain tumor invasion model that also
incorporates the effects from radiotherapy and chemotherapy.
In the present study we include the results from the 1+1
dimension case, while the results for higher dimensions will
be presented elsewhere (cf. [5]).

II. METHODOLOGY

A. The Mathematical Model

The core model PDE, that describes heterogeneous brain
tumor invasion (cf. [19]) and incorporates the effects from
radiotherapy and chemotherapy (cf. [20], [21]), is given in the
form:
∂c̄

∂t̄
= ∇ ·

(
D̄(x̄)∇c̄

)
+ ρc̄(1− c̄

ck
)− R̄(c̄, t̄)− Ḡ(c̄, t̄) , (1)

where c̄(x̄, t̄) denotes the tumor cell density, ρ denotes the net
proliferation rate, ck denotes the carrying capacity and D̄(x̄)
is the diffusion coefficient representing the active motility of
malignant cells satisfying

D̄(x̄) =

 Dg , x̄ ∈ Ω̄g Grey Matter

Dw , x̄ ∈ Ω̄w White Matter
, (2)

with Dg and Dw scalars and Dw > Dg , since glioma cells
migrate faster in white than in grey matter.
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The term R̄(c̄, t̄) denotes low-dose-rate and fractionated
radiotherapy, and is defined by (cf. [14], [20] and the relevant
references therein):

R̄(c̄, t̄) =

 ReffkR(t̄)c̄ , t̄ ∈
(
T̄R0

, T̄R1

]
(therapy on)

0 , t̄ 6∈
(
T̄R0 , T̄R1

]
(therapy off)

(3)
where kR(t̄) denotes the temporal profile of the radiation
schedule and, by using a time step of one day, is simply one
on therapy days and zero otherwise. Reff denotes the effect of
n fractions per day and is given by

Reff = nd

{
α+ 2βd

[
g(µτ) + 2

(
cosh(µτ)− 1

(µτ)2

)
hn(φ)

]}
(4)

with

g(µτ) = µτ−1+e−µτ

(µτ)2 and hn(φ) = (n−1−nφ+φn)φ
n(1−φ)2 , (5)

where α and β are sensitivity parameters, d is the dose rate, µ
is the half time for repair of DNA damage, τ is the irradiation
duration and φ = e−µ(τ+∆τ) with ∆τ denoting the time
interval between fractions.

In analogy to the radiotherapy equation in (3), the term
Ḡ(c̄, t̄) denotes the effect of chemotherapy and, assuming a
simple log-kill mode, is defined by (cf. [20] and the relevant
references therein) :

Ḡ(c̄, t̄) =

 kG(t̄)c̄ , t̄ ∈
(
T̄G0

, T̄G1

]
(therapy on)

0 , t̄ 6∈
(
T̄G0

, T̄G1

]
(therapy off)

(6)

and k(t̄) is proportional to the drug concentration.
On the anatomy boundaries zero flux boundary conditions

are imposed while for t = 0 an initial spatial distribution of
malignant cells c̄(x̄, 0) = f̄(x̄) is assumed.

Using the dimensionless variables:

x =

√
ρ

Dw
x̄ , t = ρt̄ , c(x, t) =

1

ck
c̄

(√
ρ

Dw
x̄, ρt̄

)
,

D =
D̄

Dw
, R = R(t) =

ReffkR(ρt̄)

ρ
, G = G(t) =

kG(ρt̄)

ρ

and f(x) =
1

ck
f̄

(√
ρ

Dw
x̄

)
with N0 =

∫
f(x)dx to denote the initial number of tumor

cells in the brain, the model equation in (1) becomes

∂c

∂t
= ∇ · (D∇c) + c(1− c)−Rc−Gc . (7)

We remark that the parabolic nature of the above equation
implies continuity of c as well as of both ∂c/∂t and D∇c.
Therefore, in view of the jump discontinuities of the diffusion,
radiotherapy and chemotherapy parameters, described in rela-
tions (2), (3) and (6) respectively, appropriate compatibility
conditions have to be imposed on the interface between white
Ωw and gray Ωg matter regions, as well as a proper time
schedule has to be followed in order to distinguish and
properly implement time intervals with no or any kind of

therapy protocol, especially if it is to follow a time step other
than the time step of one day.

To be more precise and in order to fix notation let us
assume that radiotherapy and chemotherapy are respectively
administered in the time intervals

T1 < t ≤ T3 and T2 < t ≤ T4

with
0 = T0 < T1 < T2 ≤ T3 < T4 < T5 = T.

Then, the dimensionless IBVP in 1+1 dimensions takes the
form:

∂c

∂t
=

∂

∂x

(
D
∂c

∂x

)
+ ρ`c− c2 , x ∈ [a, b], T`−1 < t ≤ T`

∂c

∂x
(a, t) =

∂c

∂x
(b, t) = 0

c(x, 0) = c`(x)
(8)

where

ρ` = ρ`(t) =



1 , T0 < t ≤ T1

1−R , T1 < t ≤ T2

1−R−G , T2 < t ≤ T3

1−G , T3 < t ≤ T4

1 , T4 < t ≤ T5

(9)

and

c`(x) =



f(x) , T0 < t ≤ T1

c(x, T1) , T1 < t ≤ T2

c(x, T2) , T2 < t ≤ T3

c(x, T3) , T3 < t ≤ T4

c(x, T4) , T4 < t ≤ T5

. (10)

Furthermore, let us also assume that there are K interface
points wk in the region [a, b] that distinguish white from gray
matter. To be more specific, assume that

a = w0 < w1 < · · · < wk < · · · < wK < wK+1 = b,

and, without any loss of the generality, define

Ωg =

dK/2e⋃
k=1

W2k−1 and Ωw =

bK/2c⋃
k=1

W2k (11)

with
Wk = (wk−1, wk) , k = 1, . . . ,K + 1 . (12)

Then, the required compatibility conditions across each inter-
face point wk , k = 1, . . . ,K, take the form:

lim
x→w−

k

c(x, t) = lim
x→w+

k

c(x, t) (13)

and
lim
x→w−

k

D(x)cx(x, t) = lim
x→w+

k

D(x)cx(x, t) . (14)
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Finally, we remark that the diffusion coefficient D in (7),
is described by:

D = D(x) =

 γ, when x ∈ Ωg

1, when x ∈ Ωw

, (15)

where γ = Dg/Dw.

B. Derivative Discontinuous Hermite Collocation (DHC)

Let us consider a uniform partition of each one of the k =
1, . . . ,K + 1 regions Wk = [wk−1, wk] into Nk subintervals
of length

hk :=
wk − wk−1

Nk
. (16)

Therefore

[a, b] =
N+1⋃
j=1

Ij , Ij = [xj−1, xj ] (17)

with
xj = a+ j hj(k) , j = 0, . . . , N + 1 , (18)

where

N =
K+1∑
k=1

Nk and hj(k) = hk when Ij ⊆ Wk , (19)

for k = 1, . . . ,K + 1.
The DHC method (cf. [16], [3]) seeks an approximate

solutions u(x, t) ∼ c(x, t) in the form

u(x, t) =
N+1∑
j=0

[α2j(t)φ2j(x) + α2j+1(t)φ2j+1(x)] (20)

where the derivative discontinuous Hermite cubic basis func-
tions φ2j(x) and φ2j+1(x), centered at the node xj , are defined
by

φ2j(x) =



φ

(
xj − x
hj(k)

)
, x ∈ Ij

φ

(
x− xj
hj+1(k)

)
, x ∈ Ij+1

0 , otherwise

, (21)

and

φ2j+1(x) =



−hj(k)

γj
ψ

(
xj − x
hj(k)

)
, x ∈ Ij

hj+1(k)

γj+1
ψ

(
x− xj
hj+1(k)

)
, x ∈ Ij+1

0 , otherwise

.

(22)
The functions φ(s) and ψ(s) are the generating Hermite cubics
over [0, 1], that is, for s ∈ [0, 1],

φ(s) = (1− s)2(1 + 2s) , ψ(s) = s(1− s)2 (23)

and

γj =

 γ, when Ij ⊆ Ωg

1, when Ij ⊆ Ωw

. (24)

It can, now, readily be verified that

u(xj , t) = a2j(t), (25)

ux(xj , t) =

 a2j+1(t)/γ , if xj ∈ Ωg
∧
xj 6= wk ∀k

a2j+1(t) , if xj ∈ Ωw
∧
xj 6= wk ∀k

,

(26)
while, whenever xj = wk, for some k, there holds

lim
x→w−

k

γjux(x, t) = lim
x→w+

k

γj+1ux(x, t) (27)

hence, the compatibility condition (14) is satisfied.
For the evaluation of the unknown parameters αi ≡

αi(t) , i = 0, . . . , 2(N + 1) the Collocation method produces
a system of ordinary differential equations (ODEs) by forcing
the approximate solution u(x, t) to vanish at 2N + 2 interior
collocation points and the 2 boundary collocation points.
Collocation at the Gauss points (cf. [8]) adopts the two roots
of the Legendre polynomial of degree 2 in each element
Ij , j = 1, . . . , N + 1 to produce the needed interior
collocation points. Namely, the interior Gaussian collocation
points for each element Ij are given by

σ2j−1 =
xj−1 + xj

2
− hj

2
√

3
and σ2i =

xj−1 + xj
2

+
hj

2
√

3
.

(28)
Substituting, now, u(x, t) of (20) into the equation of the IBVP
in (8), observing that in each Ij is an element of four degrees
of freedom and noticing that in the interior of each Ij there
are no interface points, the two elemental collocation equations
are written as

2j+1∑
L=2j−2

α̇L(t)φL(σi) = γj

2j+1∑
L=2j−2

αL(t)φ′′L(σi)

+ ρ`

2j+1∑
L=2j−2

αL(t)φL(σi) (29)

−

 2j+1∑
L=2j−2

αL(t)φL(σi)

2

for i = 2j − 1 , 2j and where, of course, α̇L(t) =
d

dt
αL(t)

and φ′L(x) =
d

dx
φL(x).

Working as in [6], the above elemental equations (29) are
expressed in matrix form by:

2j+1∑
L=2j−2

αL(t)φ
(m)
L (σi) = C

(m)
j αααj , i = 2j − 1, 2j , (30)

where

C
(m)
j =

[
A

(m)
j B

(m)
j

]
, m = 0, 2 (31)

αααj =
[
α2j−2(t) α2j−1(t) α2j(t) α2j+1(t)

]T
(32)
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with

A
(m)
j =

 φ
(m)
2j−2(σ2j−1) φ

(m)
2j−1(σ2j−1)

φ
(m)
2j−2(σ2j) φ

(m)
2j−1(σ2j)



=
1

hmj

 s
(m)
1

hj(k)
γj

s
(m)
2

s
(m)
3 −hj(k)

γj
s

(m)
4

 , m = 0, 2

(33)

B
(m)
j =

 φ
(m)
2j (σ2j−1) φ

(m)
2j+1(σ2j−1)

φ
(m)
2j (σ2j) φ

(m)
2j+1(σ2j)



=
1

hmj

 s
(m)
3

hj(k)
γj

s
(m)
4

s
(m)
1 −hj(k)

γj
s

(m)
2

 , m = 0, 2

(34)

and

m = 0 m = 2

s
(m)
1

9+4
√

3
18 −2

√
3

s
(m)
2

3+
√

3
36 −1−

√
3

s
(m)
3

9−4
√

3
18 2

√
3

s
(m)
4 − 3−

√
3

36 −1 +
√

3

.

Using, now, the symbol ◦ to denote the Hadamard matrix
product, the matrix form of the elemental equations in (29)
may be written as (see also [6]):

C
(0)
j α̇ααj = γjC

(2)
j αααj + ρ`C

(0)
j αααj

−
(
C

(0)
j αααj

)
◦
(
C

(0)
j αααj

)
(35)

Moreover, observe that combination of the relations in (26)
and the Neumann boundary conditions in (8) immediately
implies

α1(t) = α2N+3(t) = 0 , (36)

hence, also,
α̇1(t) = α̇2N+3(t) = 0 . (37)

The above elemental and boundary collocation equations
lead to the non-linear Collocation system of ODEs, described
by:

C0α̇αα = γγγC2ααα+ ρ`C0ααα− (C0ααα ◦ C0ααα) (38)

where the (2N + 2)× (2N + 2) matrices Cm, m = 0, 2 and
γγγ are defined by:

Cm =



Ã
(m)
1 B

(m)
1

A
(m)
2 B

(m)
2

. . . . . .

A
(m)
N B

(m)
N

A
(m)
N+1 B̃

(m)
N+1



and
γγγ = diag (γ1 γ2 γ2 · · · γN γN γN+1) ,

while the 2N+2 vectors ααα ≡ ααα(t) and α̇αα ≡ α̇αα(t) are described
by

ααα =
[
α0(t) α2(t) · · · α2N+1(t) α2N+2(t)

]T
α̇αα =

[
α̇0(t) α̇2(t) · · · α̇2N+1(t) α̇2N+2(t)

]T
.

The vectors Ã(k)
1 and B̃

(k)
N+1 denote the first columns of the

matrices A(k)
1 and B(k)

N+1 respectively, as their second columns
have been omitted due to the zero boundary conditions.

Concluding this section we point out that the linear inde-
pendence of the derivative discontinuous Hermite cubic basic
functions yields the non-singularity of the matrix C0 of the
Collocation ODE system in (38) implying the existence, of
course, of the inverse C−1

0 .

C. Implicit-Explicit Runge-Kutta schemes
Implicit-Explicit (IMEX) Runge-Kuttta schemes (cf. [18],

[2], [12] and the references therein) are based on implementing
an implicit scheme for the stiff part and an explicit scheme for
the non or mildly stiff part of a spatial discretized system of
ODEs. Here, based on the effective coupling of the Hermite
Collocation method with Runge-Kutta schemes we’ve reported
in [3] and [4], we implement an IMEX Runge-Kutta scheme
(cf. [17]) that operates on the Collocation system of ODEs in
(38) and applies Diagonally Implicit Runge-Kutta (DIRK; cf.
[1]) for the linear part and Strong Stability Preserving Runge-
Kutta (SSPRK; cf. [23], [24]) for non linear part.

To be more specific, let us write the Collocation system of
ODEs in (38) at time level t = tn = n∆t as

C0α̇αα
(n) = γγγC2ααα

(n) + ρ`C0ααα
(n) −

(
C0ααα

(n) ◦ C0ααα
(n)
)

(39)

or, equivalently, as

α̇αα(n) = L
(
ααα(n)

)
+N

(
ααα(n)

)
(40)

where
L
(
ααα(n)

)
= γγγC−1

0 C2ααα
(n) + ρ`ααα

(n) (41)

and
N
(
ααα(n)

)
= −C−1

0

(
C0ααα

(n) ◦ C0ααα
(n)
)

(42)

with
α̇αα(n) =

[
α̇

(n)
0 α̇

(n)
2 · · · α̇(n)

2N+2

]T

and
ααα(n) =

[
α

(n)
0 α

(n)
2 · · ·α(n)

2N+2

]T
.

Then, the IMEX Runge-Kutta scheme for the solution of the
system in (40) is expressed as (cf. [17]):

ααα(1) = ααα(n) + λ∆tL
(
ααα(1)

)
ααα(2) = ααα(n) + ∆tN

(
ααα(1)

)
+ ∆t (1− 2λ)L

(
ααα(1)

)
+

+ λ∆tL
(
ααα(2)

)
ααα(3) = ααα(n) +

∆t

4

(
N
(
ααα(1)

)
+N

(
ααα(2)

))
+
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+
∆t(1− 2λ)

2
L
(
ααα(1)

)
+ λ∆tL

(
ααα(3)

)
ααα(n+1) = ααα(n) + ∆t

[
N
(
ααα(1)

)
+N

(
ααα(2)

)
+

+ 4N
(
ααα(3)

)
+ L

(
ααα(1)

)
+ L

(
ααα(2)

)
+

+ 4L
(
ααα(3)

)]
Finally, we remark that the convergence and stability prop-

erties of the above scheme have been studied in [17].

III. NUMERICAL SIMULATIONS

In this section, we report the results from the numerical
investigation of the performance of the IMEX-DHC method
on two virtual model problems.

For both model problems the values of the radiotherapy
and chemotherapy parameters used are given by (cf. [20])
G = 0.0571 day−1 and R = 0.0196 day−1, respectively.
The radiotherapy protocol followed included equal doses of
1.8Gy per day for 35 days, from day 170 to day 205, while
the chemotherapy protocol, starting from day 205, included
six cycles of daily treatment for 5 consecutive days followed
by a 20 day recess.

A. Model Problem I
For the first single source model, centered at x̄ = 1, we
consider the values:

ā = −10 cm, b̄ = 10 cm, w̄1 = −6 cm, w̄2 = 8 cm

Ω̄g = [ā, w̄1) ∪ (w̄2, b̄] and Ω̄w = [w̄1, w̄2]

Dg = 0.0013 cm2day−1, Dw = 0.0065 cm2day−1

ρ̄ = 0.012 day−1 , N0 = 2× 104 cells

.

The results form the numerical simulation are depicted in Figs.
1 and 2, as well as in Table I.

More specifically, Fig. 1 depicts the evolution of the cell
density function c̄(x̄, t̄). One may easily identify periods of
untreated and treated tumor growth.

Fig. 1: Time evolution of the cell density c̄(x̄, t̄)

The radiotherapy effect on the total number of tumor cells
N̄(t̄)/N0, where N(t̄) =

∫ b̄
ā
c̄(x̄, t̄)dx̄ , is depicted in Fig. 2.

Finally, Table I summarizes the performance of the DHC-
IMEX method. One may easily observe the 4-th order of
convergence of the DHC method.

Fig. 2: The effect of radiotherapy on the total number of tumor
cells.

Table I DCH-IMEX Performance

h Error O.o.c. Time (sec)

1/8 3.5687e-06 - 0.24

1/16 2.3357e-07 3.93 0.30

1/32 1.4760e-08 3.98 0.42

1/64 9.2474e-10 3.99 0.88

1/128 5.6156e-11 4.04 1.55

B. Model Problem II

For the triple source model we consider the values:

ā = −10 cm, b̄ = 10 cm, w̄1 = −4 cm, w̄2 = 6 cm

Ω̄g = [ā, w̄1) ∪ (w̄2, b̄] and Ω̄w = [w̄1, w̄2]

Dg = 0.0013 cm2day−1, Dw = 0.0065 cm2day−1

ρ̄ = 0.012 day−1 , N0 = 2× 104 cells

All results are summarized in Figs. 3 and 4 as well as Table
II and are completely similar to the corresponding ones of the
previous model case.

Fig. 3: Time evolution of the cell density c̄(x̄, t̄) .
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Fig. 4: The effect of radiotherapy and chemotherapy on the
total number of tumor cells.

Table II DCH-IMEX Performance

h Error O.o.c. Time (sec)

1/8 5.3380e-06 - 0.22

1/16 3.4585e-07 3.94 0.28

1/32 2.1802e-08 3.98 0.40

1/64 1.3655e-09 3.99 0.90

1/128 8.5010e-11 4.00 1.52

IV. CONCLUSION

We have developed and investigated the performance of
a high order Derivative Discontinuous Hermite Collocation,
coupled with an IMEX Runge-Kutta scheme, for the solution
of a quasi-linear reaction diffusion IBVP that models the brain
tumor growth taking into consideration brain’s heterogeneity
and the effects of radiotherapy and chemotherapy. The results
obtained justify and encourage further analysis as well as
implementation in higher dimensions.
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