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Objectives

Overall Objective

Effectively combine

I conventional deterministic PDE solving methods and

I traditional probabilistic Monte Carlo approaches

for solving linear Elliptic Partial Differential Equations.

Short term goal

Design, implement and evaluate a robust and easy to use
prototype system that allows further experimentation in order to
elucidate the capabilities and computational characteristics of the
resulting PDE solvers.

Long term goal

Provide practical (production?) computational tools that add value
to existing high performance PDE solvers.
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Basic idea

Stochastic pre-processing A Monte Carlo-based walk on spheres
approach is utilized to decouple the original PDE
problem into a set of independent PDE sub-problems.

Deterministic solving Each of the resulting sub-problems is solved
independently by an appropriately selected PDE
solver.



Long and short term: PDE problems

BEWARE:
I No stochastic coefficients
I Decomposition at continuous level (no PDE discretization)
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Specific Algorithm (1/2)

PDE Problem

Lu(x) = f (x) x ∈ D ⊂ Rd ,

Bu(x) = g(x) x ∈ ∂D,

Subdomains and Interfaces

D = ∪ND
µ=1Dµ

Iµ,ν = ∂Dµ ∩ (∂Dν ∪ Dν) ⊂ Rd−1, µ 6= ν, µ, ν = 1, . . . ,ND.
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Specific Algorithm (2/2)

Data: i1, i2, . . . , iN : subdomains we wish to compute the solution.
Result: ũµ, µ = i1, . . . , iN : computed solutions in Dµ

// PHASE I: Estimate solution on interfaces

while Iµ,ν ⊂ ∪Nj=1∂Dij do

Select control points xi ∈ Iµ,ν , i = 1, 2, . . . ,Mµ,ν ;
Estimate the solution u at xi by Monte Carlo;

Calculate the interpolant uIµ,ν of uµ,ν using xi ;

end

// PHASE II: Compute solution in subdomains

for j = 1, 2, . . . ,N do
Solve the PDE problem:;

Lijuij (x) = fij (x) x ∈ Dij ;

Bijuij (x) = gij (x) x ∈ ∂Dij ∩ ∂D ;
L∗ijuij (x) = hij (x) x ∈ Dij

end
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I R. Papancheva, I. Dimov, and T. Gurov. A new class of
grid-free Monte Carlo algorithms for elliptic BVP, Numerical
Methods and Applications, 2003.

I J. Acebron, M. Busico, P. Lanucara, and R. Spigler, Domain
decomposition solution of elliptic boundary-value problems via
Monte Carlo and quasi-Monte Carlo methods. SIAM Journal
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I PDD-HPC Research project (Acebron at al.)



Nevertheless

To the best of our knowledge

I No systematic experimentation as been performed.

I No state-of-the-art PDE solving modulus have been
considered.

I No practical issues have been raised.

I No software components are readily available.

I No new computing paradigms have been explored.

Isolated and sporadic efforts.
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Basic algorithms and software components

I Our QMC implementations based on known random walks on
spheres algorithms. GRID FREE!

I Use of standard C++ library

I Common 2D and 3D user interface

I SINTEF’s Multilevel B-splines library for interpolation

I State of the art PDE solvers from http://www.dealii.org/ (
2007 J. H. Wilkinson Prize for Numerical Software)

I State of the art graphics integration (TecPlot)



Selected experiments in 2D

∂2u

∂x2
+
∂2u

∂y2
= f (x , y), ∀(x , y) ∈ Ω ≡ [−1, 1]× [−1, 1],

u(±1, y) = cosh(±2) cos(2πy)
u(x ,±1) = sin(πx) sinh(±1) + cosh(2x),

∀(x , y) ∈ ∂Ω.

u(x , y) = sin(πx) sinh(y) + cosh(2x) cos(2πy).

I 8 subdomains with interfaces at x1 = 0, y1 = −0.5, y2 = 0
and y3 = 0.75.

I Seek the solution only in Ω1,0, Ω0,1 and Ω2,1
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Error reductions for various configurations



GPU experimentation

I Computing devices:
I CPU: Intel(R) Core(TM) i7 CPU 870 (2.93GHz)
I GPU: GeForce GTX 480 (1401MHz)

I Speedups CPU/GPU+CPU
I Maximum speedup of QMC: 13x
I Maximum overall speedup: 150x

Trivial implementation!



Web Services experimentation

I Computing servers:
I Local PCs
I Tier 3 local computational servers
I Amazon virtual machines

Low communication/computation ratio

Trivial implementation!



Synopsis and Prospects

I Potential for
I Software reuse
I Hardware utilization
I Utilization of high performance PDE solvers and interpolants
I Further experimentation
I Huge speedups and practical use

I Questions need to be answered
I Error analysis
I Balance the errors involved (random walks, interpolation, PDE

solving and roundoff) in practice
I Extent to more general problems
I . . .

New line of reasoning that provides new intuition about the
dynamics of PDE MC simulations.

https://github.com/mvavalis/Hybrid-numerical-PDE-solvers
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