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Abstract 

The numerical solution of the Helmholtz model with complex 
coefficients is considered. This PDE problem is split into real and 
imaginary parts and so transformed into a coupled system of two 
Helmholtz problems with real coefficients. Associated iterative models 
at both continuous and discrete levels are proposed. The convergence 
of these, Block SOR type, iterative methods for solving the linear 
algebraic system of equations associated with the 5-point-star 
Helmholtz discretization is analyzed. Numerical experiments which 
confirm the theoretical results and exhibit the effectiveness of the 
proposed schemes are presented. 

1. Introduction 

The Helmholtz equation has been proved a very powerful mathematical 
tool for modeling acoustic wave propagation in the sea [4] as well as for 
several other physical phenomena of completely different nature (e.g., time-
harmonic magnetic simulations [11]). In this paper, we concentrate on the 
Helmholtz equation as a model of sound propagation that arises in numerous 
physical applications and provides the foundations for several practical 
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applications [12, 21, 26, 25]. For such applications, the accuracy of the 
numerically computed solutions is of obvious importance but also the 
computational efficiency (both CPU time and memory) is of equal 
importance. Therefore, the search for efficient and accurate Helmholtz 
solvers is well justified. 

In this study, we focus on the complex Helmholtz equation 

 fuku =+Δ 2  in Ω, (1) 

where Δ is the Laplace operator, and k is the wave number in the complex 
plane. The general solution of Helmholtz equation (1), in the case where 

2R∈Ω  is a circular disk, is given by 

 ( ) ( ) ( )∫
π θ+θ θθ=

2

0
sincos, deDyxu yxik  (2) 

and represents a combination of plane waves propagating in different 
directions [ ].2,0 π∈θ  ( )θD  is a distribution function of the direction of 

propagation. Helmholtz equation (1) is coupled with boundary conditions 
which constitute an approximation to the Sommerfeld radiation condition 

 0lim =⎟
⎠
⎞⎜

⎝
⎛ α+
∂
∂

∞→
uv

ur
r

ı  (3) 

used in models of acoustic scattering [4]. 

Discretizations of the above Helmholtz problem (1), (3) using a finite 
element, a finite difference or a spectral method result in a linear system of 
algebraic equations whose matrix A is typically complex, non-Hermitian, 
indefinite, very large and sparse. Direct methods based on Gauss elimination 
with partial pivoting require, in particular in the 3-dimensional case, a 
prohibited amount of additional storage and thus have limited use. Multilevel 
methods commonly suffer from the requirement that the coarse spaces used 
should be fine enough to accurate represent the solution [6, 9]. In addition, 
the complex coefficient matrix A typically has eigenvalues with both positive 
and negative real parts [6]. This fact usually causes difficulties for iterative 
methods. It should also be pointed out here that fast direct methods (for 
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example FFT), regularly used for the Helmholtz equation with Dirichlet and 
Neumann boundary conditions, cannot be applied to the above problem due 
to the fact that the boundary conditions are of Robin type. 

In practice, the above mentioned complex linear system is usually solved 
by either a Gauss elimination type direct method or by Krylov subspace 
methods [24] like quasi-minimal residual (QMR) [7] and bi-conjugate 
gradient methods. The latter ones seem to be very popular in recent studies 
although there are still several open questions to be answered. The main 
associated research issue is how to accelerate the convergence and the main 
drawback of many Krylov-based methods (in particular those developed in 
the 90’s) is the fact that they solve the complex system by transforming it 
into an equivalent real one of double dimensions. This has to be avoided (as 
it the case of recently developed methods [10, 25, 18, 17]) since such real 
systems have spectra that are less favorable for the convergence of Krylov-
based methods. 

Besides numerous domain decomposition based iterative algorithms (see 
[5, 20, 26] and references therein) for solving the Helmholtz problem, 
conventional iterative methods have already been used and analyzed. 
Specifically, Bayliss et al. [3] considered conjugate gradient type methods 
and Douglas, Jr. et al. [16] analyzed an alternating-direction iterative method. 
Freund studied Quasi Minimum Residual (QMR) methods [7, 8]. It is worth 
to point out that [26] includes an accurate and up-to-day review on iterative 
methods and their preconditioners for the solution of the Helmholtz equation. 

The preconditioning of the iterative methods has also received a lot of 
attention in the past decade (see [6] and references therein) which have 
increased significantly in the past few years [23, 18, 22, 10, 17, 25]. These 
efforts led to the development of effective preconditioners in 2- and 3-
dimensions derived in many different ways, e.g., (1) by replacing the 
Sommerfeld-like boundary conditions on the two opposite edges of the 
rectangular domain by Dirichlet or Neumann conditions and exploit fast 
direct solvers, (2) by using specialized incomplete LU factorizations, (3) by 
using analytic factorizations of the Helmholtz operator and (4) by multigrid 
based schemes. 
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From the recent efforts for the iterative numerical solution of the 
Helmholtz problem, we should mention the reduction scheme proposed by 
Axelsson and Kucherov [1] that leads to an effective preconditioning for 
Helmholtz models similar to the ones considered in the present study. 
Numerical results show that their scheme competes well with other known 
iterative schemes like QMR. 

In this paper, an effort to analyze basic iterative methods for finite 
difference Helmholtz complex algebraic linear systems is made. These 
methods are formulated in a block Successive Over-Relaxation (SOR) 
manner and only real arithmetic is performed. Discussions concerning such 
an approach have appeared in the literature (see for example [26, 15]) but to 
the best of our knowledge neither implementation nor analysis has been 
carried out for the Helmholtz problem or any similar one. 

It is important to make clear that the objective of present study is not to 
provide a more efficient way to iteratively solve finite difference Helmholtz 
complex algebraic linear systems but to provide a new generic iterative 
approach that will add value to the plethora of other direct and iterative 
schemes and properly utilize preconditioners (shifted Laplace 
preconditioners, multilevel Krylov methods, algebraic multigrid, sweeping 
preconditioner) commonly used in solving similar systems. 

The rest of this paper is organized as follows: In the next section, we 
briefly describe the physical problem of wave propagation, its mathematical 
models in general and the Helmholtz wave equation problem in particular. 
Furthermore, we formulate a PDE scheme that iterates between the real and 
imaginary parts of the original complex PDE model. In Section 3, we present 
a simple finite difference scheme to discretize the Helmholtz problem 
considered, and derive the resulting linear system of complex algebraic 
equations. We then formulate the block iterative schemes for solving these 
equations and carry out the convergence analysis of one of the proposed such 
schemes. The numerical verification of the convergence analysis is presented 
in Section 4 together with experimental data that exhibit the convergence 
characteristics of the proposed methods. Section 5 contains our concluding 
remarks. 
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2. Helmholtz Models and the Algebraic Linear System 

2.1. The basic Helmholtz PDE model 

The acoustic problem defined in an open domain Ω with regular 

boundary ,dR∈Ω∂  which we assume it is composed by the different parts 
,DΓ  ,NΓ  ,NRΓ  can be written down as: 

 

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Γ+

Γψ=
ν∂
∂

Γχ=

Ω−=∇ε⋅∇−
∂
∂β+

∂

∂α

,onconditionsreflecting-non

,on

,on

,in2

2

NR

N

D
u

u

fut
u

t
u

 (4) 

where ν denotes the outward unit normal to the boundary, α is related to the 
propagation velocity of acoustic waves and β takes into account dissipative 
terms. The typical values for the space dimension d are 2 and 3 but for the 
rest of this paper, we will assume .2=d  Our results seem to be easily 
extended to cover the case where 3=d  but such an extension is beyond the 
scope of this paper. The aim of non-reflecting conditions is to simulate wave 
propagation in unbounded domains: they are a suitable combination of time 
and space derivatives. Suitable initial conditions on u and its time derivative 
should be provided as well. 

In this paper, we consider the following linear Helmholtz PDE model 
with suitable absorbing boundary conditions of Robin type on the artificial 
boundary 

fuquau =+−Δ− 22 ı  in Ω, (5) 

0=α+
ν∂
∂ uu ı  on ,Ω∂≡Γ  (6) 

where we assume that the coefficients q and α are bounded real constants and 
that a is a real valued, bounded and sufficiently regular function so both the 
existence and uniqueness of the solution of the PDE problem lying in 

( )Ω1H  for reasonable f are assured. The coefficient α is assumed to be 
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positive and such that (6) represents a first-order absorbing boundary 
condition. The analytic solution of (5) is 

 ( ) ( ) ( ) ,, 2w
yxyxu φ∗φ=  where ( ) ( ) 21 −+=φ −− wzzw eez ıı  (7) 

and where 0>w  is the singular frequency. 

It is our belief that the basic formulation of the methods and most parts 
of the analysis that will follow can be easily extended to more general PDE 
models of complex Helmholtz type. In fact, our schemes seem to be 
appropriate for more advanced radiation conditions than the simple first-
order ones considered in this paper. Such more accurate absorbing boundary 
conditions are available and include high-order local and exact nonlocal, 
infinite elements, and perfectly matched layers (PML). 

2.2. An iterative Helmholtz PDE model 

Let us now split the analytic solution u of Helmholtz problem (5), (6) 
into real Ru  and imaginary Iu  parts, split similarly the right hand side f, 

substitute IR uuu ı+≡  and IR fff ı+≡  in (5) and (6) and equate the real 

and imaginary parts of both equations to end up with the following coupled 

system of PDE problems defined in :2R  

IRRR uqfuau 22 +=−Δ−  in Ω, 

I
R uu α=
ν∂

∂  on Γ, (8) 

RIII uqfuau 22 −=−Δ−  in Ω, 

R
I uu α−=
ν∂

∂  on Γ. (9) 

If the functions Iu  and Ru  in the right hand sides of (8) and (9), respectively, 

were somehow known, then we could very easily solve (for example using 
Fast Fourier Transforms) the above two real PDE problems. This observation 
naturally leads us to the construction of a scheme which for ...,2,1=n  

iterates as follows: 
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( ) ( ) ( )n
IR

n
R

n
R uqfuau 2121 +=−Δ− ++  in Ω, 

( )
( )n
I

n
R u

u
α=

ν∂
∂ +1

 on Γ, (10) 

( ) ( ) ( )12121 +++ −=−Δ− n
RI

n
I

n
I uqfuau  in Ω, 

( )
( )1

1
+

+
α−=

ν∂
∂ n

R

n
I u

u
 on Γ. (11) 

Given an initial value for the first iterates ( )0
Ru  (and/or ( ))0

Iu  the above 

scheme defined by the two coupled PDE problems produces sequences of 

successive iterates ( )n
Ru  and ( ),n

Iu  ...,2,1,0=n  which we hope that 

converge, as n tends to infinity, to the analytic solution functions Ru  and ,Iu  
respectively. Here it is worth making the following remarks concerning the 
above iteration scheme: 

• The PDE problems involved are in 2R  and therefore there exist a 
plethora of mature software tools of high quality to solve them. 

• The real PDE problems involve Helmholtz equation with only 
Neumann boundary conditions. So, they can be solved with fast 
solvers of optimal computational complexity. 

• The iteration scheme given above constitutes a basis to more effective 
schemes. For example, one may easily accelerate its convergence by 
means of well known basic techniques, like the ones associated with 
the Successive Over-Relaxation (SOR) method, the Accelerated Over-
Relaxation (AOR) method, etc. 

It has been already experimentally observed that the above scheme does 
exhibit fast converge for certain configurations. The theoretical analysis and 
the further experimental analysis of the method described above is underway 
and will be presented elsewhere. 

For the rest of this paper, we will consider a discrete analogue of the 
above iterations which are at continuous (PDE) level. Specifically, we will 
propose, analyze and implement iterative methods, motivated by the above 
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one, at the linear algebra level. We should point out that we essentially have 
here two different, in their philosophy and construction, iterative approaches. 
They differ in the fact that for the above described continuous scheme we 
first formulate the iterations and we then discretize each PDE problem to 
obtain a numerical solution by iterations. In the approach we will consider 
next we first discretize the original complex PDE problem (5)-(6) and then 
derive the iteration scheme. 

2.3. The Helmholtz finite difference linear system 

A numerical approximation of the analytic solution of the problem            
(5)-(6) can be obtained using finite element, finite difference or spectral 
discretization methods. In this paper, we consider the finite difference case 
but it is our belief that both the derivation and analysis of the proposed 
iterative methods for finite element or spectral methods on uniform space 
discretizations are, probably, easier. For details on the recent finite difference 
discretization schemes for the Helmholtz equation the reader is referred to 
[2]. Below we generate the linear algebraic system associated with a 
particular simple case. Other discretization schemes and configurations may 
be treated similarly. 

For simplicity (and without loss of generality), we set ( )21,0≡Ω  and 
consider the uniform partition of Ω∂Ω ∪  of step size (same in both 

directions) ,1
1
+

= Nh  where N is the number of the interior points in each 

direction with corresponding nodes ( ) ( ),,, jhihyx ji ≡  ( ) .110, += Nji  

We discretize the equations in (5) on the nodes of the grid with second         
order central differences. Using ( ),, jiij yxuu ≡  ( ),, jiij yxaa ≡  ≡ijg  

( ) ,4222 +− ijaqh ı  ( )jiij yxff ,≡  and ,2
ijij fhb ≡  we easily obtain from 

(5) the following ( )21+N  “interior” algebraic equations: 

( ) ,110,,,,1,1,,1,1 +==+−−−− +−+− Njibuguuuu ijjijijijijiji  (12) 

and, from (6), the following 4N “boundary” equations: 

( ) ,11,2,2 ,1,,2,0,1,1 Njuhuuuhuu jNjNjNjjj =α−=α−= ++− ıı  
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( ) .11,2,2 1,,2,0,1,1, Niuhuuuhuu NiNiNiiii =α−=α−= ++− ıı  

The above coupled “interior” and “boundary” equations can be written in 
matrix form as follows: 
 ,bu =A  (13) 

where 

[ ] ,1,11,11,01,11,11,00,10,10,0
T

NNNNNN uuuuuuuuuu ++++++= """"  

[ ] ,1,11,11,01,11,11,00,10,10,0
T

NNNNNN bbbbdbbbbb ++++++= """"  

( ) ( ) ,

2

2

22 22

1

1

0

+×+

+

∈

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

= NN

N

N
I

II

II
I

C

D
D

D
D

A %%%  (14) 

and where ( ) ( )22 +×+∈ NNI R  is the identity matrix, 

 
( )

⎪⎩

⎪
⎨
⎧

+=α+

=
=

1,0for,2ˆ
,11for,ˆ

NjIh

Nj

j

j
j

ıD

D
D  (15) 

with 

( ) .110,

22
11

11
22

ˆ

,1

,

,1

,0

+=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

α+−
−−

−−
−α+

=

+

Nj

hg
g

g
hg

jN

jN

j

j

j

ı

ı

D %%%  

3. The Iterative Helmholtz Methods 

3.1. Formulation 

Select 

 ( ) ( )22
2

11...,,1,
2

1 +×+∈⎟
⎠
⎞⎜

⎝
⎛= NNdiagJ R  (16) 
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and set JJS ⊗=  to transform the original linear system (13) into the 
following equivalent one 
 ,cAv =  (17) 

where ,,,1 SbcSuvSSA === −A  

,

2
2

2
2

1

2

1

0

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−

=

+N

N
DI

IDI

IDI
IDI

ID

A
%%%

 (18) 

( )

⎪⎩

⎪
⎨
⎧

+=α+

=
=

1,0for,2ˆ
,11for,ˆ

NjIhD

NjD
D

j

j
j

ı
 (19) 

with 

( ) .110,

22

21

12

22

ˆ

,1

,

,1

,0

+=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

α+−

−−

−−

−α+

=

+

Nj

hg

g

g

hg

D

jN

jN

j

j

j

ı

ı

%%%  

Note that the matrix A is obviously symmetric and is spectrally equivalent to 
.A  We now split A, v and c in real and imaginary parts 

,,,21 CRCR cccvvvAAA ııı +=+=+=  

and transform the complex linear system (17) into the following equivalent 
real one: 

 ,~~~ cvA =  (20) 

where 

( ) ( ) ,~,~ 22 2222 ++ ∈⎥⎦
⎤

⎢⎣
⎡=∈⎥⎦

⎤
⎢⎣
⎡= NN

c
c

c
v
v

v RR
C

R

C

R  
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( ) ( ) ,~ 22 2222

21

12 +×+∈⎥⎦
⎤

⎢⎣
⎡

−
= NN

AA
AA

A R  (21) 

( ) ( ) ,

2
2

2
2

22 22

1

2

1

0

1
+×+

+

∈

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−−

−

= NN

N

N
BI

IBI

IBI
IBI

IB

A R
%%%

(22) 

( ) ( ) ( )22 22
01102 ,...,,, +×+∈= NNCCCCdiagA R  (23) 

with 

( ) ( ) ,22,0...,,0,2 22
0 IqhhhhdiagC +α+αα=  (24) 

( ) IqhhhdiagC 22
1 2,0...,,0,2 +αα=  (25) 

and 

,

2
21

11
12

2

,1

,

,2

,1

,0

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−
−−

−

=

+ jN

jN

j

j

j

j

b
b

b
b

b

B
%%%

 

where .4 2
,

2
, jiji ahb −=  

We solve real system (20) using two variations of the block SOR method 
defined by the iteration matrix 

 ( ) ( )[ ],11 FDLDTSOR ω+ω−ω−= −  (26) 

one denoted by BSOR1 where 

 ⎥⎦
⎤

⎢⎣
⎡ −

=⎥⎦
⎤

⎢⎣
⎡
−

=⎥⎦
⎤

⎢⎣
⎡

−
=

00
0

,
0
00

,
0

0 1
1

1
1

2

2
1

A
F

A
L

A
A

D  (27) 
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and another one denoted by BSOR2 where 

 .
00

0
,

0
00

,
0

0 2
2

2
2

1

1
2 ⎥⎦

⎤
⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡
−

=⎥⎦
⎤

⎢⎣
⎡=

A
F

A
L

A
A

D  (28) 

The above block matrix partitions lead to the following two block iterative 
schemes: 

• BSOR1 

( ) ( ) ( ) ( ) ,1 1
21

1
2

1
CCRR cAvAAvv nnn −−+ ω+ω−ω−=  

( ) ( ) ( ) ( ) ,1 1
21

1
2

11
RCRC cAvAAvv nnn −−++ ω+ω−−ω=  (29) 

• BSOR2 

( ) ( ) ( ) ( ) ,1 1
12

1
1

1
RCRR cAvAAvv nnn −−+ ω+ω−ω−=  

( ) ( ) ( ) ( ) ,1 1
12

1
1

11
CCRC cAvAAvv nnn −−++ ω+ω−−ω=  (30) 

where ω is the relaxation parameter of the SOR method. 

3.2. Convergence analysis 

The Jacobi iteration matrix ( )11
1

1 FLDTJ += −  associated with the 
BSOR1 method can be written as 

 ,1 MITJ ⊗=  where ⎥⎦
⎤

⎢⎣
⎡ −

=
01
10

1I  and .1
1

2 AAM −=  (31) 

We remark here that, as it can be easily shown, the Jacobi matrix associated 
with the BSOR2 scheme is the inverse of the Jacobi iteration matrix of the 
BSOR1 scheme given in (31). For the rest of this section we concentrate 
solely on the BSOR1 scheme. We begin our analysis with the following 
lemma: 

Lemma 1. The spectral radius of the matrix M in (31) is bounded by 

 ( ) ( ) ( ) ,
4

212,,, 22

2
max

2

qhh
ahqahkM

+α

−−
≡α≤ρ  (32) 

where ( ) .,max 1,0max jiNji yxaa +≤≤≡  
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Proof. Notice that the real matrix 2A  is diagonal so 1
2
−A  is readily 

available. The following are the only three non-zero values of the elements of 

,1: 22
1

1
2 qhpA =−  ( ),21 22

2 qhhp +α=  ( ).41 22
3 qhhp +α=  Let us set 

{ }jiji ahp ,
2
,

2 max4 −≡  and observe that pb ji ≤,  to obtain 

( )

( )

∑
+

=+≤≤
∞ =

2

2

2

1
,

21
max

N

j
ji

Ni
mM  

 (( ) ( ) ,122,22max 21 pppp +++≤  

( ) ( ) ,222,22 32 pppp ++++  

( ) ( ) ).4,32 33 pppp +++  (33) 

Since ,321 ppp <<  we have 

 ( ) .222 3ppM ++≤∞  (34) 

Substitute p and 3p  in the above and recall that ( ) ∞≤ρ MM  to derive 

(32) and conclude the proof of the lemma. ~ 

Now let us apply a similarity transformation to matrix M, 

MAAAAAAAMAA ≡== −−−−− 21
21

21
2

21
21

1
2

21
2

21
2

21
2  

and observe that since 1A  is symmetric and 2A  is diagonal, the matrix M  is 

also symmetric and the matrices M and M  are similar and thus they have the 
same spectrum of eigenvalues. 

We will use the following well-known lemma later. 

Lemma 2. If NNA ×∈ R  is symmetric, then 

 (i) the eigenvalues of A are real, 

(ii) A has a set of 2N  linearly independent eigenvectors. 

If we use the above lemma and the similarity transformation for M, we 
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conclude that the eigenvalues ,iμ  ( ) ,2...,,1 2+= Ni  of M are real and M 

has a set of ( )22+N  linearly independent eigenvectors. 

The second lemma to be used later for the eigenvalue analysis of matrix 

jT  (see [14]) is stated as follows: 

Lemma 3. Let the ii NN ×  matrices ,iA  di ...,,1=  possess complete 

sets of linearly independent set of eigenvectors ( )ijiy ,  with corresponding 

eigenvalues ( ) ( )....,,1,...,,1 diNj ii
j

A
i
i

==λ  Then the matrix 21 AAA ⊗≡  

dA⊗⊗"  possesses the ∏ =
d
i iN1  linearly independent eigenvectors ≡

jy  

( ) ( ) ( ) ,,,2,1 21 djdjj yyy ⊗⊗⊗ "  where ( )djjj ...,,1≡  with corresponding 

eigenvalues ( ) ( ) ( ) ( ).2
2

1
1

d
d

j
A

j
A

j
A

j
A λλλ≡λ "  

The eigenvalues of 1I  are ,2,1 ı±=λ  and since they are different, their 

associated eigenvectors are linearly independent. The matrices M and 1I  
satisfy the conditions of Lemma 3, therefore the eigenvalues of JT  are ,iμ± ı  

( ) ,2...,,1 2+= Ni  and if we use (32), we will have that the spectral radius 
( )JTρ  is 

 ( ) ( ) ( ) ( ) ( ).,,,11 α≤ρρ=⊗ρ=ρ qahkMIMITJ  (35) 

We also need the following theorem whose proof can be found in [13]. 

Theorem 4. Let A be the block 2-cyclic consistently ordered coefficient 
matrix of a linear system in block partitioning form with square nonsingular 
diagonal blocks and JT  be the corresponding Jacobi matrix. If all the 

eigenvalues of 2
JT  are nonpositive, then, for the convergence of the block 

SOR method, we have the following conditions: 

( ) 1<ρ SORT  if ( ) ,1
20

JTρ+
<ω<  (36) 

( )
.

11

2
2

J
opt

Tρ++
=ω  (37) 
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By observing the fact that the matrix A~  in (21) is block tri-diagonal and 
therefore 2-cyclic consistently ordered [27] and the fact that the eigenvalues 

of 2
JT  are ( ) ,022 ≤μ−=μ± iiı  we can easily use Theorem 4 above to 

estimate regions of convergence for ω where the iteration scheme defined by 
(29) converges for any initial guess to the solution of (17). Furthermore, we 
can realize that for an estimate of ,optω  the value of the relaxation parameter 

ω that maximizes the rate of convergence, is the following: 

 
( )

.
,,,11

2
2 α++

≡ω≈ω θ
qahk

opt  (38) 

It is worth to point out that the convergence results obtained above directly 
relate the rate of convergence of the iterative method with the physical 
parameters of the problem a, q and α and the discretization parameter h. This 
might be of significant importance in “production” simulations for real life 
applications. 

4. Numerical Experiments 

This section contains selected numerical data obtained from a rather 
comprehensive experimental study whose objective was to confirm the 
theoretical results and to identify the convergence characteristics, the 
applicability and the efficiency of the proposed methods. We begin by giving 
a brief description of the experimental framework followed by the 
presentation of selected numerical data. 

4.1. The experimental framework 

We consider the PDE problem (5), (6) and select ( ) ( )yxc
wyxa ,, =  and 

w=α  and 0≥q  (q is proportional to the attenuating media capability which 

waves are propagated). For the wave speed ( ),, yxc  we choose the following 

four different functions which are rather typical in underwater acoustics 

( ) ,4,0 =yxc  

( ) ,22, 3
1 yxyxc ++=  
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( ) ( )( ) ( )( ),4sin2sin2,2 yxeyxc xy π−π+=  

( )
( )⎩

⎨
⎧

π++

≤
=

.otherwise,2sin1
,5.0,4

,3 xye
x

yxc x  (39) 

We select f in (5) such that the analytical solution u, is the one given in (7). 

The error is estimated on the maximum norm, ,nr∞  and the iteration procedure 

is terminated when ,10 4−
∞ ≤ns  where 

 ( )
( ) ( )

( )
∞

∞
−

∞∞∞
−

=−= n

nn
nnn

V

VV
suVr

1
,  (40) 

and where ( )nV  is the approximate solution at the nth iteration. Obviously 
the converged computed solution, is the same regardless which of the two 

BSOR methods is used. As initial value we have used ( ) ( )( ) bAdiagV 10 −≡  

and we have computed an estimate of the order of convergence (of the nth 
iterant) using the following expression: 

 
( )

( ) ,loglog
2
1

2

1 ⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−

−

∞

∞

h
h

uV

uV
n

h

n
h  (41) 

where ,1h  2h  are the grid steps of two different uniform partitions of the 

domain and where ( )n
hV
1

 and ( )n
hV

2
 are the associated computed solutions at 

the nth iteration. 

All programs for this study were implemented in MATLAB with double-
precision arithmetic. 

4.2. Numerical data 

For the qualitative analysis of the convergence of our scheme we start by 
presenting in Figures 1 and 2 snapshots of the history of convergence of the 
real and imaginary parts of the computed solution for the case where =c  
( ),,1 yxc  5=q  and 10=w  using 20=N  grid points in each space 

direction. As can be easily seen the “high frequency” components of the error 
are cut during the first few iterations while the rest of them try to level up the 
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low frequency terms. This feature might be very desirable in particular 
production-type runs of the model. 

In Figure 3, we display the plots of the errors in the real (on the left) and 
the imaginary (on the right) parts of u on the discretization points for the 
previous PDE configuration. These plots exhibit the fact that no 
“singularities” have been introduced by the iterative process and the 
distribution of the error follows the variations of the solution itself. This 
observation also holds for any other model configuration we have been 
experimenting with. 

 
Figure 1. The real part of the computed solution after performing 2 (top-
left), 10 (top-right), 100 (bottom-left) and 370 (bottom-right) iterations for 
( ) ( ),,, 1 yxcyxc =  5=q  and 10=w  using .20=N  



Manolis Vavalis 116 

 
Figure 2. The imaginary part of the computed solution after performing 2 
(top-left), 10 (top-right), 100 (bottom-left) and 370 (bottom-right) iterations 
for ( ) ( ),,, 1 yxcyxc =  5=q  and 10=w  using .20=N  
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Figure 3. The real (left) and imaginary parts (right) of the absolute error 
( ) uV −370  for the problem considered in Figures 1 and 2. 

In Table 1, we consider the BSOR1 scheme, we select ( )yxcc ,0=  and 

we present data for three different PDE configurations ( ),20and5,1=q  and 

five different discretizations with 20,15,10,5=N  and 30 points in each 

space direction. The columns containing the number of required iterations k 

and the norm of the maximum error kr∞  show that, the rate of convergence 

becomes smaller as w decreases. This is expected since as q approaches zero 
the condition number of matrix 2A  increases. This problem can be, to a great 

extent, easily avoided by relaxing our iterative scheme. For example BSOR1 
can be modified so it converges uniformly with respect to q and in fact 
exhibits very rapid convergence for .0=q  For this, it is sufficient (as was 

proposed and analyzed in [19]) to use the following updating scheme for 
each iteration: 

( )11 BSORBSOR Axbxx −α+←   with  ( ) ,2
1

eq
Axbe BSOR

T −
=α  

where 1BSORx  is the solution computed by BSOR1 and where e is defined 

through an additional matrix “near” the null space of A. The comparison of 
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the columns containing the theoretically determined (through (38)) θω  and 

the numerically computed (through experimental systematic search) optimum 
values of the SOR relaxation parameter εω  easily establish numerically the 

validity of (38). The region of convergence that may be obtained by Theorem 
4 and the preceding discussion was also carefully verified during the 
numerical systematic search for .εω  No significant variations have been 

observed for other model configurations. 

Table 1. The discretization parameter N, the theoretical determined θω  and 

the experimentally determined εω  optimum values of the relaxation 

parameter ω, the number of iterations k required for convergence and the 

max-norm of the error at the kth iteration kr∞  

 

We use (41) and the results in Table 1 to compute the order of 
convergence of the whole numerical scheme. As it is apparent from the 
slopes of the straight lines in Figure 4, where we plot the discretization 

parameter N versus the max-norm of the associated computed solution kr∞  in 

log-log scale, the order of convergence is approximately equal to two. This 
confirms the second order of convergence of our discretization numerical 
scheme and in fact the consistency of our iteration scheme. 
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Figure 4. The log-log plot of the maximum norm of the error kr∞  of the 

computed solution versus N for 20,5,1=q  for the data considered in Table 

1. 

In Table 2, we compare the convergence behavior of BSOR1 and 
BSOR2 on four different model configurations by presenting the norm of the 

error kr∞  together with the numerically determined optimum value of the 

relaxation parameter εω  and the associated required number of iterations k. 

From these data we can see that the two BSOR methods compliment each 
other in the sense that in the cases where one converges very slowly the other 
converges quite rapidly. In particular, in the case where 0→q  (diminishing 

dissipation) the condition number of 2A  becomes large and therefore the 

denominator of ( )Mρ  approaches zero. This leads to slow converges for the 

BSOR1 but to rather rapid convergence for BSO2. 
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Table 2. The number of iterations required for convergence k, the max-norm 

of the error of the convergent solution kr∞  and the experimentally determined 

optimum value of the relaxation parameter εω  associated with both BSOR1 

and BSOR2 for various configurations of q, w and ( )yxc ,  using 20=N  

 

In Figure 5, we graphically present the number of iterations required for 
convergence by both BSOR1 and BSOR2 methods for several values of ω 
when ( ) ( ),,, 0 yxcyxc =  ,5=q  10=w  and .20,15,10,5=N  The curves 

in this figure lead to the conclusion that the optimum value of the relaxation 
parameter ω of the block SOR is, as expected, conversely proportional to the 
number of iterations N. Furthermore, it is seen that if ω is properly selected, 
then no more that 100 iterations are required for convergence for any step 
size up to .30=N  

 
Figure 5. The number of iterations required for convergence by the BSOR1 
(left) and BSOR2 (right) methods versus ω when ( ) ( ),,, 0 yxcyxc =  ,5=q  

10=w  with .30,20,10,5=N  
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Finally, in Table 3 we compare the CPU time, the floating point 
operations (flops) and the required memory (in words) by the MATLAB’s 
LU solver (a direct solver based on banded LU factorization) and BSOR1 for 

.30,20,15,10,5=N  The CPU time of BSOR1 is significantly greater than 

the CPU time of LU. This is due to the fact that the LU solver is highly 
optimized (with BLAS routines in assembly) while BSOR1 is the plane 
implementation where absolutely no effort has been made to increase its 
performance. In addition, the BSOR1 CPU time contains everything 
including for example checking the convergence criterion at every iteration. 
As far as the number of flops is concerned, we see that BSOR1 competes 
very well with LU. The main advantage of BSOR1 is in the memory required 
which is much less than the memory required for LU. We may remark here 
that a further increase of N will exhibit further significant improvement in the 
performance of the BSOR compared to the LU solver. 

Table 3. The CPU time, executed number of floating point operations (flops) 
and the required memory for LU and BSOR1 respectively for ( ),,0 yxcc =  

10=w  and 20=q  with 20,15,10,5=N  and 30 

 

5. Epilogue 

The main objective of this paper is to develop and analyze effective 
iterative methods for the solution of the complex linear system of algebraic 
equations that arise from the discretization of the complex linear Helmholtz 
problem in two dimensions. 

In the course of our work first we considered elements from the scientific 
area of modeling acoustic propagation problems. In particular, we focused on 
the Helmholtz equation on a rectangular region with first order absorbing 
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boundary conditions. This mathematical model was discretized via the 
popular five-point-star finite difference scheme which led us to a complex 
linear system of algebraic equations. 

We studied the properties of the complex system and reformulated it into 
an equivalent real system of double dimension. This system is naturally 
partitioned into a 22 ×  block structure. Based on this block partition, and 
after transforming this system by means of a similarity transformation, we 
proposed two block SOR type methods. 

We theoretically analyzed one of these two iterative methods, namely the 
one denoted by BSOR1. Specifically, we proved its convergence and 
determined bounds of its regions of convergence in terms of the various 
physical parameters of the mathematical model. 

A comprehensive experimental study of the two proposed methods has 
been carried out in order to 

• Verify the theoretically determined results and in particular ensure 
that the iterative methods considered converge to the analytic solution 
at the appropriate discretization level. 

• Examine the convergence characteristics of the proposed methods 
their applicability and their effectiveness in problems with different 
values of the physical parameters. 

• Compare their efficiency in terms of both time and space complexity 
against the well known direct method available in MATLAB. 

From the theoretical and experimental results presented in this paper, one 
can easily conclude the following facts: 

• The two proposed methods do converge for a large class of different 
configurations of the Helmholtz mathematical problem. 

• The theoretical results have been confirmed and proved themselves as 
a useful practical tool for experimentation. 

• The two proposed methods are complimentary to each other in the 
sense that it was very often observed that for configurations where 
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one converges slowly the other converges rather fast. This becomes 
apparent by comparing the 6th and the 8th columns in Table 2. 

• The BSOR1 method competes well with the main direct method 
found in MATLAB. Specifically, its time complexity is “slightly” 
higher while its memory complexity is drastically lower. 

The problem of deriving effective iterative methods for solving the linear 
Helmholtz PDE problem still remains interesting and challenging. In 
particular, it seems that the best combination of iterative solver and 
preconditioner is problem dependent [26]. One can clearly identify several 
extensions of the work presented in this paper that they might significantly 
contribute to the search for such an optimal scheme. Such open research 
directions that are beyond the scope of this paper, are the following: 

1. Formulate and analyze a hybrid iterative method that combines the 
two proposed methods in the spirit of the basic SSOR iterative 
schemata. It is worth to note that the SSOR preconditioner gave the 
best performance on a recent related study [18]. 

2. Use one of the proposed two methods as a preconditioner to a Krylov-
based method. Since BSOR1 compares well with the direct solver 
then a BSOR1/bi-conjugate gradient combination seems to be very 
attractive. 

3. Investigate the effectiveness of the proposed methods on complex 
problem configurations like the ones considered in [25] where non-
local/high order boundary conditions are imposed, obstacles exist, 
non-homogeneous media are considered .... Such configurations 
usually lead to p-cycle matrices (with )2>p  and as it is known (see 

[27]) basic iterative methods, like the ones considered in this study, 
can outperform the commonly used Krylov subspace methods by 
properly exploiting the cyclicity of the matrix. 

4. Finally, it is worth to mention that our approach, and to some extent 
our theoretical and experimental analysis, can be easily extended to 
more dimensions, parabolic variants of the Helmholtz equation and 
more complex, higher order absorbing boundary conditions. 
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